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The field of dynamic optimization is related to the applications of nature-inspired al-
gorithms [1]. The area is rapidly growing on strategies to enhance the performance of
algorithms, but still there is limited theoretical work, due to the complexity of nature-
inspired algorithms and the difficulty to analyze them in the dynamic domain. Therefore,
the development of BGs to evaluate the algorithms in dynamic optimization problems
(DOPs) is appreciated by the evolutionary computation community. Such tools are
not only useful to evaluate algorithms but also essential for the development of new
algorithms.

The exclusive-or (XOR) DOP generator [5] is the only general benchmark for the
combinatorial space that constructs a dynamic environment from any static binary-
encoded function f(x(t)), where x(t) ∈ {0, 1}n, by a bitwise XOR operator. XOR DOP
shifts the population of individuals into a different location in the fitness landscape.
Hence, the global optimum is known during the environmental changes. In the case of
permutation-encoded problems, e.g., the travelling salesman problem (TSP) where x(t)
is a set of numbers that represent a position in a sequence, the BGs used change the
fitness landscape. For example, the dynamic TSP (DTSP) with exchangeable cities [2]
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and DTSP with traffic factors [4] where the global optimum value is unknown during
the environmental changes.

In this report, the dynamic BG for permutation-encoded problems for the TSP (DBG-
PTSP) proposed in [3] is used to convert any static TSP benchmark problem to a DOP,
by modifying the encoding of the instance instead of the fitness landscape. The rest of
the paper is organized as follows. Section 1 gives a description of the TSP. Section 2
describes the framework of DBGPTSP. Section 3 gives the performance measurement
and Section 4 gives an example of results obtained from an algorithm.

1 Dynamic Travelling Salesman Problem

The TSP is one of the most fundamental NP-complete combinatorial optimization prob-
lems. It can be described as follows: Given a collection of cities, we need to find the
shortest path that starts from one city and visits each of the other cities once and only
once before returning to the starting city. Usually, the problem is represented by a fully
connected weighted graph G = (N,A), where N = {0, . . . , n} is a set of nodes and
A = {(i, j) : i 6= j} is a set of arcs. The collection of cities is represented by the set
N and the connections between them by the set A. Each connection (i, j) is associated
with a non-negative value dij which represents the distance between cities i and j.

Formally, the TSP can be described as follows:

f(x) = min

n
∑

i=0

n
∑

j=0

dijψij, (1)

subject to:

ψij =

{

1, if (i, j) is used in the tour,

0, otherwise,
(2)

where ψij ∈ {0, 1}, n is the number of cities, and dij is the distance between city i and
j.

This report gives a benchmark generator to generate dynamic test cases of the TSP,
i.e., the dynamic benchmark generator for permutation encoded problems for TSP
(DBGPTSP) [3].

2 Framework of the DBGPTSP

Considering the description of the TSP above, each city i ∈ N has a location defined
by (x, y) and each connection (i, j) ∈ A is associated with a non-negative distance dij .

Usually, the distance matrix of a problem instance is defined as ~D = (dij)n×n.

Every f algorithmic evaluations a random vector ~V (T ) is generated that contains
exactly m × n objects of the TSP problem instance, where T = ⌈t/f⌉ is the index of
the period of change, t is the iteration count of the algorithm, f determines the speed
of change, and m determines the degree of change.
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Table 1: Details of the TSP problem instances

name no. cities optimum

eil51 51 426

kroA100 100 21282

kroA150 150 26524

kroA200 200 29368

lin318 318 42029

pr439 439 107217

rat783 783 8806

More precisely, m ∈ [0.0, 1.0] defines the degree of change, in which only the first
m× n of ~V (T ) object locations are swapped. Then a randomly re-ordered vector ~U(T )
is generated that contains the objects of ~V (T ). Therefore, exactly m×n pairwise swaps
are performed in ~D using the two random vectors (~V (T )⊗ ~U(T )), where ⊗ denotes the
swap operator.

With DBGPTSP the encoding of the problem changes but the fitness landscape re-
mains unchanged. Hence the known optimum of the benchmark instances remains the
same during the execution whereas the algorithm is biased to search to a different location
in the fitness landscape on every dynamic change. The implementation of DBGPTSP
integrated with an ant colony optimization (ACO) algorithm as an example, see section
4, is available is available from the competition website1

3 Evaluation Criteria

• Problem Instances and Dimensions: The seven problem instances obtained
from the TSPLIB are described in Table 1.

• Dynamic Test Environments: The algorithm should be tested in the following
test cases for all problem instances:

– Case1: f = 1000, m = 0.1

– Case2: f = 1000, m = 0.25

– Case3: f = 1000, m = 0.5

– Case4: f = 1000, m = 0.75

– Case5: f = 10000, m = 0.1

– Case6: f = 10000, m = 0.25

1 http://cs.cug.edu.cn/teacherweb/lichanghe/pages/organization/competition/ECDOP-Competition14.html
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– Case7: f = 10000, m = 0.5

– Case8: f = 10000, m = 0.75

The eight test cases for all seven problem instances are already implemented in a
shell, i.e., Run. Therefore, when the algorithm is implemented, then the Run file
should be executed.

• Runs: 30 (already set in the code).

• Algorithmic Evaluations: 100000 (already set in the code).

• Termination Condition: When the algorithm reaches the maximum number of
algorithmic evaluations (already set in the code).

• Detection of Change: Algorithms should be informed when a dynamic change
occurs.

• Measurement: Record the best-so-far solution for every 100 fitness evaluations
and calculate the modified offline performance [1] as follows:

P̄offline =
1

S

S
∑

i=1





1

R

R
∑

j=1

P ∗

ij



 , (3)

where S = 1000 is the size of samples (Algorithmic Evaluation / 100), R = 30
is the number of independent runs, and P ∗

ij is the fitness of the best solution of

the i − th sample in run j after the last dynamic change. NOTE: The P̄offline

is already implemented in the benchmark generators and saved in text files. The
error percentage that should be given in Table 2 is defined as follows:

Error =
(P̄offline −Opt)

Opt
100 (4)

where P̄offline is as defined in Eq. 3 (result from the algorithm) and Opt is given in
Table 1 for each problem instance. Note that, the less Error obtained the better
the performance.

4 Example

Algorithm Name: Ant System (AS)
Parameters Used: α = 1, β = 5, ρ = 0.8, popsize = 50 ants.
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Table 2: Example of the results obtained from the AS algorithm

problem
instance

Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Total

eil51 10 14 17 19 6 6 7 7 11.2

kroA100 17 25 32 33 9 10 11 11 18.9

kroA150 19 28 36 38 10 13 14 14 22.1

kroA200 25 34 41 43 14 16 18 18 26.4

lin318 28 39 48 50 15 20 23 25 31.5

pr439 37 51 60 63 21 28 36 38 42.2

rat783 51 69 81 86 32 44 59 66 61.4

Average Percentage 30.5
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