
Swarm and Evolutionary Computation 6 (2012) 1–24
Contents lists available at SciVerse ScienceDirect
Swarm and Evolutionary Computation
2210-65

http://d

n Corr

E-m
journal homepage: www.elsevier.com/locate/swevo
Survey Paper
Evolutionary dynamic optimization: A survey of the state of the art
Trung Thanh Nguyen a,n, Shengxiang Yang b, Juergen Branke c

a School of Engineering, Technology and Maritime Operations, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
b Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
c Warwick Business School, University of Warwick, Coventry CV4 7AL, United Kingdom
a r t i c l e i n f o

Article history:

Received 19 February 2012

Received in revised form

9 April 2012

Accepted 12 May 2012
Available online 23 May 2012

Keywords:

Evolutionary computation

Swarm intelligence

Dynamic problem

Dynamic optimization problem

Evolutionary dynamic optimization
02/$ - see front matter & 2012 Elsevier B.V. A

x.doi.org/10.1016/j.swevo.2012.05.001

esponding author. Tel.: þ44 151 231 2028.

ail address: T.T.Nguyen@ljmu.ac.uk (T.T. Nguy
a b s t r a c t

Optimization in dynamic environments is a challenging but important task since many real-world

optimization problems are changing over time. Evolutionary computation and swarm intelligence are

good tools to address optimization problems in dynamic environments due to their inspiration from

natural self-organized systems and biological evolution, which have always been subject to changing

environments. Evolutionary optimization in dynamic environments, or evolutionary dynamic optimi-

zation (EDO), has attracted a lot of research effort during the last 20 years, and has become one of the

most active research areas in the field of evolutionary computation. In this paper we carry out an

in-depth survey of the state-of-the-art of academic research in the field of EDO and other meta-

heuristics in four areas: benchmark problems/generators, performance measures, algorithmic

approaches, and theoretical studies. The purpose is to for the first time (i) provide detailed explanations

of how current approaches work; (ii) review the strengths and weaknesses of each approach; (iii)

discuss the current assumptions and coverage of existing EDO research; and (iv) identify current gaps,

challenges and opportunities in EDO.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Many real-world optimization problems are subject to chan-
ging conditions over time, so being able to optimize in a dynamic
environment is important. Changes may affect the object func-
tion, the problem instance, and/or constraints, e.g., due to the
arrival of new tasks, the breakdown of machines, the change of
economic and financial conditions, and the variance of available
resources [1,2]. Hence, the optimal solution(s) of the problem
being considered may change over time.

In the literature of optimization in dynamic environments,
researchers usually define optimization problems that change
over time as dynamic problems or time-dependent problems. In this
paper, our concern is focused on dynamic optimization problems

(DOPs), which are a special class of dynamic problems that ‘‘are

solved online by an optimization algorithm as time goes by’’.
Addressing DOPs is very challenging since it requires an opti-

mization algorithm to not only locate an optimal solution(s) of a
given problem but also track the changing optimal solution(s) over
time when the problem changes. Evolutionary computation (EC)
and swarm intelligence are good tools to address DOPs due to their
inspiration from natural self-organized systems and biological
evolution, which have always been subject to changing environ-
ments. The study of applying evolutionary algorithms (EAs) and
ll rights reserved.

en).
similar techniques to solving DOPs is termed evolutionary optimiza-

tion in dynamic environments or evolutionary dynamic optimization

(EDO) in this paper.1

It is noticeable that in many EDO studies, the terms ‘‘dynamic
problems/time-dependent problems’’ and ‘‘DOPs’’ are not expli-
citly distinguished or are used interchangeably. In these studies,
DOPs are either defined as a sequence of static problems linked up
by some dynamic rules [3–7] or as a problem that has time-
dependent parameters in its mathematical expression [8–11],
without explicitly mentioning whether the problems are solved
online by an optimization algorithm or not. In definitions like
those cited above, although the authors may assume that the
problems are solved online by the algorithm as time goes by (as
mentioned by the authors elsewhere or as shown by the way their
algorithms solve the problems), this assumption was not captured
explicitly in the definitions. However, it is necessary to distinguish
a DOP from a general time-dependent problem because, no matter
how the problem changes, from the perspective of an EA or an
optimization algorithm in general, a time-dependent problem is
only different from a static problem if it is solved in a dynamic
way, i.e., the algorithm needs to take into account changes during
the optimization process as time goes by [1,12,13]. Hence, only
DOPs are relevant to EDO research.
1 Although its main focus is on evolutionary optimization techniques, this

paper will also cover swarm intelligence and other meta-heuristic techniques used

to solve DOPs.

www.elsevier.com/locate/swevo
www.elsevier.com/locate/swevo
dx.doi.org/10.1016/j.swevo.2012.05.001
dx.doi.org/10.1016/j.swevo.2012.05.001
dx.doi.org/10.1016/j.swevo.2012.05.001
mailto:T.T.Nguyen@ljmu.ac.uk
dx.doi.org/10.1016/j.swevo.2012.05.001

T.T. Nguyen et al. / Swarm and Evolutionary Computation 6 (2012) 1–242
To make it clearer and to distinguish DOPs from other types of
time-dependent or dynamic problems, in this paper we propose
the following definition for DOPs:

Definition 1 (Dynamic optimization problem). Given a dynamic
problem ft, an optimization algorithm G to solve ft, and a given
optimization period ½tbegin,tend�, ft is called a dynamic optimization

problem in the period ½tbegin,tend� if during ½tbegin,tend� the under-
lying fitness landscape that G uses to represent ft changes and G

has to react to this change by providing new optimal solutions.

A more detailed version of this definition for DOPs was
provided in [14, Chapter 4, 15].

Although a few EDO works appeared in the early days of EC
[16,17], the field is still relatively young since most of the studies
on EDO have been made in the last 20 years. During the last 20
years, especially in recent years, EDO has attracted a lot of
research effort and has become one of the most active research
areas in the EC community in terms of the number of activities
and publications. There have been regular annual special ses-
sions/workshops dedicated to EDO in major conferences in the
field such as the Congress on Evolutionary Computation, the Evon,
and the GECCO workshops; there are several special issues on
EDO in specialist journals (e.g., IEEE Transactions on Evolutionary
Computation and Soft Computing); and there are a number of
monographs on the topic [18,7,13,19].

A number of studies have been made in the past to review the
literature in the field. Some first attempts were made by Branke
[20,18]. The topic, as a part of the broader area of uncertainty and
dynamic environments, was briefly surveyed and classified in
2005 in [12]. Various aspects of EDO were also covered in many
PhD theses and monographs [18,7,13,21,19,14]. Most recently,
Cruz et al. [11] have made a detailed review on DOP studies to
(a) provide an ‘‘overview of related works on DOPs on the last
decade’’ and (b) to present a new repository about the topic in an
‘‘organized’’ way. The review was done based on a systematic
search on search engines using some DO-related terms to find
relevant references. The found references then are grouped into
different categories in terms of type of publications, type of
dynamism, methods, performance measures, applications and
publication year. These categorizations provide some interesting
statistics of the current trend of current literature, and the
proportion of studies following a particular approach within each
category. Some discussions about future directions of the field,
based on the overview, were also provided.

All the survey studies mentioned above are very useful in
summarising, classifying and providing an up-to-date overview of
existing work in EDO. However, we believe that to provide
researchers with a complete review of how and why existing
approaches work and what are the current challenges of the field,
it is necessary to complement the above surveys with a more in-
depth review which provides (a) deeper explanations of how
current approaches work; (b) the strengths and weaknesses of
each approach; (c) the current assumptions and coverage of
existing EDO research; and (d) an analysis of current gaps, the
challenges and opportunities in EDO based on (a)–(c).

The purpose of this paper is to provide such an in-depth
review. It will focus on reviewing four different aspects of EDO
research: benchmark problems/generators, performance mea-
sures, algorithmic approaches (EAs, swarm intelligence and other
meta-heuristic methods), and theoretical developments. Some
future research issues and directions regarding EDO will also be
presented.

The rest of this paper is organized as follows. The next section
reviews the benchmark problems and benchmark problem genera-
tors that have been used for EDO in the literature. Section 3 describes
the performance measures that are commonly used by researchers in
the domain. Section 4 reviews different approaches that have been
developed by researchers to address DOPs. The strengths and
weaknesses of different approaches are also discussed in Section 4.
The theoretical development regarding EDO is presented in Section 5.
Finally, Section 6 summarizes the paper and presents some discus-
sions on the future research issues and directions regarding evolu-
tionary optimization in dynamic environments.
2. Benchmark problems

2.1. Properties of a good benchmark problem

The use of benchmark problems is crucial in the process of
developing, evaluating, and comparing EDO algorithms. According
to [18,13,22,21], a good benchmark problem is one that has the
following characteristics:
1.
 Flexibility: Configurable under different dynamic settings
(change severity, frequency, periodicity) and different scales
(number of optima, dimensions, domain ranges, etc).
2.
 Simplicity and efficiency: Simple to implement, analyze, or
evaluate, and computationally efficient.

In addition, because the ultimate goal of any optimization algo-
rithm is to be applicable to real-world situations, a good bench-
mark problem needs to satisfy the following important property:
3.
 Allow conjectures to real-world problems or resemble real-
world problems to some extent [18,19].

2.2. Reviewing existing general-purpose benchmark

generators/problems

In this section, we will review the commonly used general-
purpose dynamic optimization benchmark generators/problems in
the literature based on the above criteria. The purpose is to
identify the common characteristics of benchmark problems to
(a) investigate how academic problems reflect the properties of
real-world problems and (b) facilitate researchers in choosing the
right test problems. It should be noted that in this section we focus
only on simple, artificial general-purpose benchmark generators/
problems. There are a large number of problem-specific dynamic
combinatorial benchmark problems, which are created from static
combinatorial problems such as the traveling salesmen problems,
the scheduling problems and the knapsack problems by adding
time-dependent elements to the problem parameters. For a
comprehensive list of such problems, readers are referred to [11].

When reviewing existing benchmark generators/problems,
we can either categorize problems based on the ways they are
generated, or based on the characteristics of the generated
problems. In this section we choose the second way of categor-
ization because (i) it better suits the purpose of identifying the
common characteristics of benchmark problems and (ii) it helps
users in choosing the suitable benchmark for their applications. In
the end, what users look for in selecting a benchmark problem is
not how they are generated but what types of dynamics they
represent and what characteristics they have.

The characteristics of each general-purpose benchmark gen-
erator/problem are identified and the problems are classified into
different groups based on the following different criteria:
1.
 Time-linkage: Whether the future behavior of the problem
depends on the current and/or the previous solutions found by
the algorithm or not.

T.T. Nguyen et al. / Swarm and Evolutionary Computation 6 (2012) 1–24 3
2.
 Predictability: Whether the generated changes follow a regular
pattern (e.g., optima moving in fixed step sizes, landscape
rotating in fixed angles, cyclic/periodical changes, and pre-
dictable change intervals), and hence are predictable, or not.
3.
 Visibility: Whether the changes are visible to the optimization
algorithm and if so whether changes can be detected by using
just a few detectors (special locations in the search space
where the objective or constraint functions are re-evaluated to
detect changes).
4.
 Constrained problem: Whether the problem is constrained or
not, and if yes, whether the constraints change over time.
5.
 Number of objectives: Whether the problem has a single
objective or multiple objectives.
6.
 Type of changes: Detailed explanation of how changes occur.

7.
 Changes are cyclic/periodical/recurrent or not?

8.
 Factors that change: Objective functions, domain of variables,

number of variables, constraints, or other parameters.

Tables 1 and 2 provide the detailed information of each
artificial benchmark problem in the continuous and combinatorial
domains, respectively, and their characteristics.

From Tables 1 and 2, we can see that the common character-
istics of academic benchmark problems are as follows:
�
 All of the reviewed general-purpose benchmark generators/pro-

blems are non-time-linkage problems. There are a couple of
general-purpose benchmark problems with the time-linkage
property [23,15,24], but they are proposed as a proof of
principle rather than a complete set of benchmark problems.

�
 Most of the reviewed benchmark generators/problems are uncon-

strained or domain constrained, except the two most recent
studies [25–27].

�
 In the default settings of most of the review benchmark gen-

erators/problems, changes are detectable by using just a few

detectors. Exceptions are some problem instances in [28,29]
where only one or some peaks move, and in [6,25–27] where
the presences of the visibility mask or constraints make only
some parts of the landscapes change. Due to their highly
configurable property some benchmark generators can be
configured to create scenarios where changes are more diffi-
cult to detect.

�
 In most cases the factors that change are the objective functions.

Exceptions are the problems in [25–27] where the constraints
also change and one instance in [30] where the dimension also
changes. Dimensional changes have also been taken into
account in recent combinatorial optimization research, for
example [31]. There were also some research that solved
stationary problems by considering them as problems with
changing dimensions (start from a low number of dimensions
and then increase if needed) [32,33].

�
 Many generators/problems have unpredictable changes in their

default settings, but due to their flexibility some of the
generators/problems can be configured to allow predictable
changes, at least in the frequency and periodicity of changes.

�
 A majority of benchmark generators /problems have periodical/

recurrent changes.

�
 Most generators/problems are single-objective except the problems

in [34–36]. Recently there are some new dynamic multi-objec-
tive problems e.g., [37], but most of them are based on the first
two of the papers mentioned above.

The common characteristics of academic benchmark problems
above reflect the current main assumptions of the EDO commu-
nity about the characteristics of DOPs. In Section 6.2 we will
discuss whether these assumptions fully reflect the properties of
real-world dynamic optimization problems.
3. Performance measures

Properly measuring the performance of algorithms is vital in
EDO. In this section we will (i) review existing studies to identify
the most common criteria used to evaluate EDO algorithms,
(ii) analyze the strengths and weaknesses of each measure, and
(iii) discuss the possibility to reduce the disadvantages (if there
are any) of current performance measures. Performance measures
in EDO can be classified into two main groups: optimality-based
and behavior-based. There is also a sub-group of measures for
dynamic multi-objective optimization. The subsections below
will discuss each groups of measures in details.

3.1. Optimality-based performance measures

Optimality-based performance measures evaluate the ability
of algorithms in finding the solutions with the best objective/
fitness values (fitness-based measures) or finding the solutions
that are closest to the global optimum (distance-based measures).
This type of measures is by far the most common in EDO. The
measures can be categorized into groups as follows:

Best-of-generation. This measure is calculated as the best value
at each generation, averaged over several runs. It is usually used
in two ways: first, the best value in each generation is plotted
against time to create a performance curve. This measure has
been used since the early research in [8,53–55,41] and is still one
of the most commonly used measures in the literature. The
advantage of such performance curves is that they can show a
more holistic picture of how the tested algorithm has performed.
However, because the performance curve is not scalar, it is
difficult to compare the final outcome of different algorithms
and to see whether the difference between two algorithms is
statistically significant [40].

To improve the above disadvantage, a variation of the measure
is proposed where the best-of-generation values are averaged
over all generations [50]. The measure is described below:

F BOG ¼
1

G
�
Xi ¼ G

i ¼ 1

1

N
�
Xj ¼ N

j ¼ 1

FBOGij

0
@

1
A ð1Þ

where F BOG is the mean best-of-generation fitness, G is the
number of generations, N is the total number of runs, and FBOGij

is the best-of-generation fitness of generation i of run j of an
algorithm on a particular problem. An identical measure has
independently been proposed by Morrison [40] under the name
collective mean fitness (FC).

F BOG is one of the most commonly used measures. The
advantage of this measure, as mentioned above, is to enable
algorithm designers to quantitatively compare the performance of
algorithms. The disadvantage of the measure and its variants is
that they are not normalized, hence can be biased by the
difference of the fitness landscapes at different periods of change.
For example, if at a certain period of change the overall fitness
values of the landscape is particularly higher than those at other
periods of changes, or if an algorithm is able to get particular high
fitness value at a certain period of change, the final F BOG or FC

might be biased toward the high fitness values in this particular
period and hence might not correctly reflect the overall perfor-
mance of the algorithm. Similarly, if F BOG is used averagely to
evaluate the performance of algorithms in solving a group of
problems, it is also biased toward problems with larger fitness
values.

Modified offline error and offline performance. Proposed in
[18,56], the modified offline error is measured as the average over,
at every evaluations, the error of the best solution found since the
last change of the environment. This measure is always greater

Table 1
Common general-purpose benchmark generators/problems in the continuous domain.

General notes Time-

linkage

Changes are

predictable?

Changes are detectable

by using just a few

detectors?

Single/multi

Obj?

Type of changes Changes are

cyclic/

periodical/

recurrent?

Factors that change

Objective

functions

Domain

of

variables

Number of

variables

Constr.

functions

Other notes

Switching

function

[28]

The benchmark

consists of two

landscapes A and B.

Changes can occur in

three ways: (1) linear

translation of peaks in

A; (2) global optimum

randomly moves while

the rest of landscape A

is fixed; (3) switching

landscapes between A

and B

No Mostly no (for changes

where peaks are

linearly translated,

peak movements might

be predictable; the re-

occurrence of the

switching landscape

can also be predictable)

Yes & no (there are

three types of changes.

The first and the last

can be detected by

using a few detectors,

while the second type

of change is not)

Single-

objective

Three types of changes:

(1) linear translation of

peaks; (2) global

optimum randomly

moves while the

landscape is fixed;

(3) switching

landscapes

Yes (scenario

(3)), in both

fast (two

generations)

and slow (20

generations)

modes

N/I (no

detail of

the

objective

function

is given)

No No No Linear translation of

all peaks; random

movement of global

optimum and

switching landscape

Moving

peaks [20]

The search landscape

consists of a number of

randomly generated

peaks, each has its

width, height and

location changed after

each change step. The

benchmark is highly

configurable

(dimension, number of

peaks and the

dynamics of each peak

are all configurable)

No Mostly no in the

default settings but

some factors can be

predictable if

specifically configured

(e.g., where the

parameter lambda¼1,

the peaks move in the

same direction and

hence movement

direction is

predictable)

Yes in the default

settings but can be

configurable (the

benchmark generator

can be modifiable to

allow changes in only a

part of the landscape to

make changes more

difficult to detect)

Single-

objective

Changes in heights,

widths and locations of

peaks. The widths and

heights of peaks are

changed by adding a

Gaussian variable. The

location of peaks are

moved by a fixed step

and the direction of

peaks are based on a

combination of the

previous direction and

a direction parameter

Configurable Yes No No No Each of the peaks has

its own time-

dependent

parameters height,

width and location

and hence each peak

can change

differently. E.g., [38]

configured the

benchmark to make

different peaks

change with different

frequencies and

severities

Oscillating

peaks [20]

The search landscape

oscillates among L

fixed landscapes

No Mostly no (it might be

possible to predict the

period of oscillation)

Yes Single-

objective

Landscape switching Yes (due to

the

oscillation of

landscapes)

No No No No Landscape switching

DF1 [39,40] The search landscape

consists of a number of

peaks (randomly

generated or pre-

determined), each has

its width, height and

location changed after

each time step. The

behaviors of changes

are controlled by a

logistic function. The

benchmark is highly

No No in the five tested

instances provided in

[40] but some factors

can be predictable if

specifically configured

(e.g., where the motion

of peaks is set to be

linear, peaks’

movement directions

can be predictable)

Yes in four tested

instances, no in one

test instance and

configurable (the

benchmark generator

can be modifiable to

allow changes in only a

part of the landscape to

make changes more

difficult)

Single-

objective

Changes in heights,

widths and locations of

peaks. The behaviors of

changes are controlled

by a logistic function.

Depending on the

parameter of the

logistic function,

changes in step sizes

can be fixed,

bifurcation or chaotic

No in the

five tested

instances

provided in

[40] but can

be

configurable

Yes No No No

T
.T

.
N

g
u

y
en

et
a

l.
/

Sw
a

rm
a

n
d

E
v

o
lu

tio
n

a
ry

C
o

m
p

u
ta

tio
n

6
(2

0
1

2
)

1
–

2
4

4

configurable

(dimension, number of

peaks and the

dynamics of each peak

are all configurable)

Gaussian

peak [41]

The search landscape

consists of a number of

peaks (randomly

generated), each has its

location changed after

each time step. Two

levels of severity:

abrupt and gradual,

were tested

No No (all peaks move

randomly)

Yes Single-

objective

Changes in location of

peaks. Peaks move in

random directions and

the step sizes are

uniformly distributed

over an interval

controlled by the level

of severity

No Yes No No No

Disjoint

landscape

[29]

The main principle of

this benchmark

generator is to divide

the search space into a

number of disjoint sub-

spaces, each with a

separate unimodal

function. The main

search space hence is a

composition of the

local optima from the

disjoint sub-spaces

No Mostly no but

configurable (it is

possible to configure

the benchmark to

make it predictable. In

addition, in the tested

example peaks’ values

are artificially move in

a circle, making it to

some extent possible to

predict the movement)

Dependable on the

number of peaks that

change at each time

step (in the tested

example, only the

values of some peaks

change)

Single-

objective

Changes in values of

peaks

Yes Yes No No No

Dynamic

rotation

[42]

The principle of this

benchmark generator

is to combine the

original search space

with a ‘‘visibility

mask’’, which allows

only certain parts of

the search space to

have the original

fitness values. Other

regions, which are

hidden by the mask,

have constant, pre-

defined fitness values.

The dynamics are

created by rotating the

original search space,

the mask, or both

No Mostly no (because all

changes in this

generator are created

by rotation, to some

extent we can consider

the rotation movement

predictable)

Partly (in case there is

no visibility mask, it is

possible to detect

changes using just one

detector. In case there

is a visibility mask, the

level of difficulty in

detecting changes

depends on the way

the visibility mask is

defined)

Single-

objective

Rotations of the

underlying search

space and the visibility

masks. The rotation is

controlled by an

orthogonal matrix

Yes (due to

the rotation)

Yes No No No Changes in visibility

masks

MOO-based

dynamic

problem

generator

[34]

The principle of this

benchmark generator

is to use the

aggregating objectives

approach to create a n-

objective dynamic

function from nþ1

static single-objective

functions through a

dynamic weight. The

dynamic weight

governs how the

dynamic problem

changes. The

benchmark is highly

configurable

No Yes and configurable (it

is possible to configure

the benchmark

generator to create

predictable changes.

For example, in the

tested instance the

optimum movement is

configured to be linear,

and hence could be

predictable)

Yes Both single

and

multiple-

objectives

are

configurable

The global optimum (or

the Pareto front in the

multiple-objective

case) can be configured

to move linearly, non-

linearly or to follow

specific moving rules.

The height of the peak

also changes

accordingly

Not in the

tested

instance but

configurable

Yes No No No The dynamic

parameter of the

main objective

function is the

aggregate weight,

which controls how

the problem changes

T
.T

.
N

g
u

y
en

et
a

l.
/

Sw
a

rm
a

n
d

E
v

o
lu

tio
n

a
ry

C
o

m
p

u
ta

tio
n

6
(2

0
1

2
)

1
–

2
4

5

Table 1 (continued)

General notes Time-

linkage

Changes are

predictable?

Changes are detectable

by using just a few

detectors?

Single/multi

Obj?

Type of changes Changes are

cyclic/

periodical/

recurrent?

Factors that change

Objective

functions

Domain

of

variables

Number of

variables

Constr.

functions

Other notes

FDA

dynamic

multi-

objective

benchmark

set [35]

(extended

to ZJZ in

[37]) and

two HE

problems

[36]

The principle of this

benchmark generator

is to combine the static

multiple-objective

functions with the

time-dependent

parameters: F(t) to

control the dynamics of

the density of Pareto

solutions, H(t) to

control the dynamic of

the shape of the Pareto

front, and G(t) to

control the dynamic

shape of the Pareto

optimal set

No Configurable (it is

possible to configure

the benchmark

generator to create

predictable changes. It

might also be possible

to predict the period of

oscillation)

Yes Multiple-

objective

The density of Pareto

solutions, the shape of

the Pareto front and

the shape of the Pareto

set change over time

Yes Yes No No No Changes in the

objective functions

are controlled by

three time-

dependent

parameters: F(t), G(t)

and H(t). FDA1 was

extended in [37] to

add non-linear

linkages between

variables and to

make PF dynamic. In

HE problems [36] the

Pareto front is

discontinuous

Dynamic

test

functions

[43]

This benchmark set

follows a landscape-

oriented approach

where the dynamic test

problems are

specifically designed to

represent different

changes in landscape

structure, in optima’s

positions, in optima’s

values etc. Changes can

be linear or periodical

No Partly (the changes in

some problems in the

benchmark set follow

predictable rules like

moving linearly or

occurring periodically)

Yes for most tested

instances (exceptions

are in problems like the

OPoL where only the

position of the global

optimum changes)

Single-

objective

Different types of

changes are generated

in different functions,

e.g., changes in

landscape structure, in

optima’s positions, in

optima’svalues, etc.

Changes can be linearly

or periodically

Yes Yes No No No

CDOPG

(XOR-

extension

for

continuous

domain)

[44]

The principle in this

generator is to use an

orthogonal

transformation matrix

to periodically rotate a

static landscape to

create dynamic

instances (in a similar

way to the XOR

benchmark in the

combinatorial domain).

The properties of the

fitness landscape is

preserved after each

change

No No (but the periodicity

of rotations can be

predictable)

Yes Single-

objective

The fitness landscape is

rotated. The magnitude

of change is defined by

the rotation angle

Yes (due to

the rotation)

Yes No No No Changes (rotations)

are made on the

decision variables.

Specifically, before

being evaluated each

individual vector is

moved (rotated) to a

different position in

the fitness landscape

using an orthogonal

matrix

CEC09

GDBG [30]

This set of benchmark

generators is a

combination of existing

ideas about landscape

shifting [45], landscape

rotation [42,45,44,46],

and using dynamic

No No (but the periodicity

of rotations can be

predictable)

Yes Single-

objective

The fitness landscape is

rotated and shifted.

The magnitude of

change is defined by

the rotation angle

Yes (due to

the rotation)

Yes No Yes (for

each

proposed

problem,

there is

one

instance

No The landscape is

rotated and the

heights/widths of

peaks are also

changed. Rotation is

made on decision

variables. The

T
.T

.
N

g
u

y
en

et
a

l.
/

Sw
a

rm
a

n
d

E
v

o
lu

tio
n

a
ry

C
o

m
p

u
ta

tio
n

6
(2

0
1

2
)

1
–

2
4

6

rules to control change

steps [40]

with

changing

dimension)

magnitude of

changes (angle of

rotation) is

determined by

dynamic rules

(small/large/chaotic/

random/recurrent/

noisy)

G24

dynamic

constrained

benchmark

set [25,26]

The principle of this

benchmark generator

is to make existing

benchmark problems

dynamic by replacing

their static parameters

with time-dependent

parameters. The

benchmark supports

dynamics in the

constraint functions

and the problems are

organized in pairs, of

which each pair has

two almost identical

problem, one with a

special property and

one with not

No Yes (changes follow

predictable rules like

linear movements and

periodical movements)

No (there are situations

when only a part of the

landscape changes due

to dynamic constraints.

In such case it might

not be easy to detect

changes using a few

detectors)

Single-

objective

Combinations of

changes in objective

functions, changes in

constraints and

changes in both.

Changes are linear and

cyclic

Yes Yes No No Yes Changes (linear and

cyclic) are made on

the parameters of the

objective functions

and constraint

functions

A dynamic

constrained

benchmark

problem

[27]

The principle of this

benchmark generator

is to combine existing

‘‘field of cones on a

zero plane’’ with

dynamic norm-based

constraints (with

square/diamond/

sphere-like shapes)

No No in the proposed

settings

No (there are situations

when only a part of the

landscape changes due

to dynamic constraints.

The author also

proposed an

unconstrained version

[47] where the level of

detectability is

adjustable)

Single-

objective

Locations of peaks and

constraints are

changed following a

Gaussian variable with

fixed mean and

variance

Partly

(changes are

recurrent

because they

are

generated

using a

Gaussian

variable with

fixed mean

and

variance)

Yes No No Yes

T
.T

.
N

g
u

y
en

et
a

l.
/

Sw
a

rm
a

n
d

E
v

o
lu

tio
n

a
ry

C
o

m
p

u
ta

tio
n

6
(2

0
1

2
)

1
–

2
4

7

Table 2
Common general-purpose benchmark generators/problems in the combinatorial domain.

General notes Time-

linkage

Changes are

predictable?

Changes are detectable

by using just a few

detectors?

Single/

multi

Obj?

Type of changes Changes are

cyclic/

periodical/

recurrent?

Factors that change

Objective

functions

Domain

of

variables

Number

of

variables

Constr.

functions

Others notes

Dynamic

match

fitness

[48]

This benchmark generator is

based on the static

bit-matching function (find a

solution that matches a given

string). The dynamics

elements are introduced by

changing the match-string.

No Not in the

default

settings but

configurable

to be cyclic

and hence its

periodicity

can be

predictable

Dependable on

particular changes

(number of bits

changed and the

location of changing

bits)

Single-

objective

Changes are introduced by

changing a number of bits in

the match-string

No (not

considered in

the tested

instances but

configurable)

Yes No No No

XOR

[49,50]

This benchmark generator

can be combined with any

static binary-coded problems

to generate dynamic

problems. Dynamic problems

are generated by XOR-ing

each individual with a special

binary mask, which

determines the magnitude of

changes (in terms of

Hamming distances).

Dynamic landscapes

generated by the XOR

operator have a special

property that the landscape

structure (and hence the

distances among individuals

and their fitness values) is

preserved after each change

No Not in the

default

settings but

configurable

to be cyclic

and hence its

periodicity

can be

predictable

Dependable on

particular changes and

on the underlying

landscape

Single-

objective

Changes are introduced by

changing a number of bits in

the binary mask, which will

later be used to transform the

position of individuals in the

population. The severity level

of changes is represented by

the Hamming distance

between the old and new

binary masks

Yes (the

original

version does

not support

cyclic

changes, but

an extended

version was

proposed in

[51,52]

Yes No No No Changes are made on the

vector of decision variables.

Specifically, before being

evaluated each individual

vector is moved to a

different position in the

fitness landscape using the

XOR operator and the

binary mask. In other

words, instead of moving

the optimum, using the

XOR operator the search

population is moved after

each change

Dynamic

DTF [22]

This benchmark generator is

based on the static unitation

and trap functions. The static

functions are made dynamic

by making their static

parameters time-dependent

and by changing the scales of

function values. The

benchmark generator is

highly configurable

No No in the

default

settings but

configurable

to be cyclic

and hence its

periodicity

can be

predictable

No (there is no

guarantee that using a

few detectors can

detect changes because

due to the nature of the

dynamic trap function,

only a part of the

search landscape

changes)

Single-

objective

Changes in optima height,

size of basin and both optima

height and basin size. Other

advanced dynamic

environments can also be

constructed

Not

considered in

the tested

instances but

configurable

Yes No No No

T
.T

.
N

g
u

y
en

et
a

l.
/

Sw
a

rm
a

n
d

E
v

o
lu

tio
n

a
ry

C
o

m
p

u
ta

tio
n

6
(2

0
1

2
)

1
–

2
4

8

T.T. Nguyen et al. / Swarm and Evolutionary Computation 6 (2012) 1–24 9
than or equal to zero and would be zero for a perfect performance

EMO ¼
1

n

Xn

j ¼ 1

eMOðjÞ ð2Þ

where n is the number of generations so far and eMOðjÞ is the best
error since the last change gained by the algorithm at the
generation j.

A similar measure, the modified offline performance, is also
proposed in the same reference to evaluate algorithm perfor-
mance in case the exact values of the global optima are not
known

PMO ¼
1

n

Xn

j ¼ 1

FMOðjÞ ð3Þ

where n is the number of generations so far and FMOðjÞ is the best
performance since the last change gained by the algorithm at the
generation j.

EMO is one of the most commonly used measures in EDO. With
this type of measures, the faster the algorithm to find a good
solution, the higher the score. The EMO is closely related to F BOG.
The only major difference between the two measures is that EMO

looks at each evaluation while F BOG looks at only the best per
generation. Similar to the F BOG, the offline error/performance are
also useful in evaluating the overall performance of an algorithm
and to compare the final outcomes of different algorithms. These
measures however have some disadvantages. First, they require
that the time a change occurs is known. Second, similar to F BOG,
these measures are also not normalized and hence can be biased
under certain circumstances.

In [14, Section 5.3.2], the offline error/performance was mod-
ified to measure the performance of algorithms in dynamic
constrained environments. Specifically, when calculating Eq. (2)
for dynamic constrained problems, the authors only consider the
best errors/fitness values of feasible solutions at each generation.
If in any generation there is no feasible solution, the measure will
take the worst possible value that a feasible solution can have for
that particular generation.

Best-error-before-change. Proposed in [29],2 this measure is
calculated as the average of the smallest errors (the difference
between the optimum value and the value of the best individual)
achieved at the end of each change period (right before the
moment of change)

EB ¼
1

m

Xm

i ¼ 1

eBðiÞ ð4Þ

where eBðiÞ is the best error just before the ith change happens; m

is the number of changes.
This measure is useful in situations where we are interested in

the final solution that the algorithm achieved before the change.
The measure also makes it possible to compare the final outcome
of different algorithms. However, the measure also has three
important disadvantages. First, it does not say anything about
how the algorithms have done to achieve the current performance.
As a result, the measure is not suitable if what users are interested
in is the overall performance or behaviors of the algorithms.
Second, similar to the best-of-generation measure, this measure
is also not normalized and hence can be biased toward periods
where the errors are relatively very large. Third, the measure
requires that the global optimum value at each change is known.

This measure is adapted as the basis for one of the comple-
mentary performance measures in the CEC’09 competition on
dynamic optimization [30].
2 Named Accuracy by the authors.
Optimization accuracy. The optimization accuracy measure (also
known as the relative error) was initially proposed in [57] and was
adopted in [58] for the dynamic case

accuracyðtÞF,EA ¼
FðbestðtÞEAÞ�MinðtÞF

MaxðtÞF �MinðtÞF

ð5Þ

where bestðtÞEA is the best solution in the population at time t,
MaxðtÞF AM is the best fitness value of the search space and
MinðtÞF AM is the worst fitness value of the search space. The range
of the accuracy measure ranges from 0 to 1, with a value of 1 and
0 represents the best and worst possible values, respectively.

The optimization accuracy has the same advantages as the
F BOG and EMO in providing quantitative value and in evaluating the
overall performance of algorithms. The measure has an advantage
over F BOG and EMO: it is independent of fitness rescalings and
hence become less biased to those change periods where the
difference in fitness becomes particularly large. The measure,
however, has a disadvantage: it requires information about the
absolute best and worst fitness values in the search space, which
might not always be available in practical situations. In addition,
as pointed by the author himself [58], the optimization accuracy
measure is only well-defined if the complete search space is not a
plateau at any generation t, because otherwise the denominator
of Eq. (5) at t would be equal to zero.

Normalized scores. When trying to compare algorithms across
a number of different change periods, or a number of problem
instances, or even different problem domains, there is the challenge
of combining quality measures. One possibility is to use rank-based
(non-parametric) statistical tests for comparison. Another option is
to normalize the values.

[14,59] proposed such a normalization even across the different
change periods of a dynamic problem. The idea is that, given a group
of n tested algorithms and m test instances (which could be m

different test problems or m change periods of a problem), for each
instance j the performance of each algorithm is normalized to the
range ð0;1Þ so that the best algorithm in this instance j will have the
score of 1 and the worst algorithm will get the score of 0. The final
overall score of each algorithm will be calculated as the average of
the normalized scores from each individual instance. According to
this calculation, if an algorithm is able to perform best in all tested
instances, it will get an overall score of 1. Similarly, if an algorithm
performs worst in all tested instances, it will get an overall score of 0.

A formal description of the normalized score of the ith algo-
rithm is given in Eq. (6)

SnormðiÞ ¼
1

m

Xm
j ¼ 1

9emaxðjÞ�eði,jÞ9
9emaxðjÞ�eminðjÞ9

, 8 i¼ 1 : n ð6Þ

where eði,jÞ is the modified offline error of algorithm i in test
instance j; and emaxðjÞ and eminðjÞ are the largest and smallest
errors among all algorithms in solving instance j. In case the offline
errors of the algorithms are not known (because global optima are
not known), we can replace them by the offline performance to get
exactly the same score. The normalized score Snorm can also be
calculated based on the best-of-generation values.

The normalized score has two major advantages. First, it looks
at relative rather than absolute performance. Second, it does not
need the knowledge of the global optima or the absolute best and
worst fitness values of a problem.

The normalized score, however, also has its own disadvantages:
first, Snorm is only feasible in case an algorithm is compared to other
peer algorithms because the scores are calculated based on the
performance of peer algorithms. Second, Snorm only shows the
relative performance of an algorithm in comparison with other
peer algorithms in the corresponding experiment. It cannot be
used solely as an absolute score to compare algorithm performance

T.T. Nguyen et al. / Swarm and Evolutionary Computation 6 (2012) 1–2410
from different experiments. For this purpose, we need to gather the
offline errors/offline performance/best-of-generation of the algo-
rithms first, then calculate the normalized score Snorm for these
values. For example, assume that we have calculated SA

norm for all
algorithms in group A and SB

norm for all algorithms in group B in a
separated experiment. If we need to compare the performance of
algorithms in group A with algorithms in group B, we cannot
compare the SA

norm against SB
norm directly. Instead, we need to gather

the EMO/PMO/FBOG of all algorithms from the two groups first, then
based on these errors we calculate the normalized scores SAB

norm of
all algorithms in the two groups.

Non-fitness distance-based measures. Although most of the
optimality-based measures are fitness-based, some performance
measures do rely on the distances from the current solutions to
the global optimum to evaluate algorithm performance. In [60],
a performance measure, which is calculated as the minimum
distance from the individuals in the population to the global
optimum, was proposed. In [61], another distance-based measure
was introduced. This measure is calculated as the distance from
the mass center of the population to the global optimum.

The advantage of distance-based measures is that they are
independent to fitness rescalings and hence are less affected by
possible biases caused by the difference in fitness of the land-
scapes in different change periods. The disadvantages of these
measures are that they require knowledge about the exact
position of the global optimum, which is not always available in
practical situation. In addition, compared to some other measures
this type of measures might not always correctly approximate the
exact adaptation characteristics of the algorithm under evaluated,
as shown in an analysis in [58].

3.2. Behavior-based performance measures

Behavior-based performance measures are those that evaluate
whether EDO algorithms exhibit certain behaviors that are
believed to be useful in dynamic environments. Examples of such
behaviors are maintaining high diversity through out the run;
quickly recovering from a drop in performance when a change
happens, and limiting the fitness drops when changes happen.
These measures are usually used complementarily with optim-
ality-based measures to study the behavior of algorithms. They
can be categorized into the following groups:

Diversity. Diversity-based measures, as their name imply, are
used to evaluate the ability of algorithms in maintaining diversity to
deal with environmental dynamics. There are many diversity-based
measures, e.g., entropy [62], Hamming distance [63–65], moment-of-

inertia [66], peak cover [18], and maximum spread [67] of which
Hamming distance-based measures are the most common.

Hamming distance-based measures for diversity have been widely
used in static evolutionary optimization and one of the first EDO
studies to use this measure for dynamic environments is the study of
[63] where the all possible pair-wise Hamming distance among all
individuals of the population was used as the diversity measure. In
[64] the measure was modified so that only the Hamming distances
among the best individuals are taken into account.

A different and interesting diversity measure is the moment-of-

inertia [66], which is inspired from the fact that the moment of
inertia of a physical, rotating object can be used to measure how
far the mass of the object is distributed from the centroid.
Morrison and De Jong [66] applied this idea to measuring the
diversity of an EA population. Given a population of P individuals
in N-dimensional space, the coordinates C ¼ ðc1, . . . ,cNÞ of the
centroid of the population can be computed as follows:

ci ¼

PP
j ¼ 1 xij

P

where xij is the ith coordinate of the jth individual and ci is the ith
coordinate of the centroid.

Given the computed centroid above, the moment-of-inertia of
the population is calculated as follows:

I¼
XN

i ¼ 1

XP

j ¼ 1

ðxij�ciÞ
2

In [66], the authors proved that the moment-of-inertia mea-
sure is equal to the pair-wise Hamming distance measure in the
binary space. The moment-of-inertia, however, has an advantage
over the Hamming distance measure: it is more computationally
efficient. The complexity of computing the moment-of-inertia is
only linear with the population size P while the complexity of the
pair-wise diversity computation is quadratic.

Another interesting, but less common diversity measure is the
peak cover [18], which counts the number of peaks covered by the
algorithms over all peaks. This measure requires full information
about the peaks in the landscape and hence is only suitable in
academic environments.

In dynamic constrained environments, a diversity-related mea-
sure was also proposed [14, Section 5.3.2], which counts the
percentage of solutions that are infeasible among the solutions
selected in each generation. The average score of this measure
(over all tested generations) is then compared with the percentage
of infeasible areas over the total search area of the landscape. If the
considered algorithm is able to treat infeasible diversified indivi-
duals and feasible diversified individuals on an equal basis (and
hence to maintain diversity effectively), the two percentage values
should be equal.

Drops in performance after changes. Some EDO studies also
develop measures to evaluate the ability of algorithms in restrict-
ing the drop of fitness when a change occurs. Of which, the most
representative measures are the measures stability [58], satisfic-

ability and robustness [64].
The measure stability is evaluated by calculating the difference

in the fitness-based accuracy measure (see Eq. (5)) of the con-
sidered algorithm between each two time steps

stabðtÞF,EA ¼maxf0,accuracyðt�1Þ
F,EA �accuracyðtÞF,EAg ð7Þ

where accuracyðtÞF,EA has already been defined in Eq. (5).
The robustness measure is similar to the measure stability in

that it also determines how much the fitness of the next genera-
tion of the EA can drop, given the current generation’s fitness. The
measure is calculated as the ratio of the fitness values of the best
solutions (or the average fitness of the population) between each
two consecutive generations.

The satisficability measure focuses on a slightly different
aspect. It determines how well the system is in maintaining a
certain level of fitness and not dropping below a pre-set thresh-
old. The measure is calculated by counting how many times the
algorithm is able to exceed a given threshold in fitness value.

Convergence speed after changes. Convergence speed after
changes, or the ability of the algorithm to recover quickly after
a change, is also an aspect that attracts the attention of various
studies in EDO. In fact many of the optimality-based measures,
such as the offline error/performance, best-of-generation, rela-
tive-ratio-of-best-value discussed previously can be used to
indirectly evaluate the convergence speed. In addition, in [58],
the author also proposed a measure dedicated to evaluating the
ability of an adaptive algorithm to react quickly to changes. The
measure is named reactivity and is defined as follows:

reactðtÞF,A,E ¼min t0�t9tot0rmaxgen,t0AN,
accuracyðt0ÞF,A

accuracyðtÞF,A

Zð1�EÞ
()

[fmaxgen�tg ð8Þ

T.T. Nguyen et al. / Swarm and Evolutionary Computation 6 (2012) 1–24 11
where maxgen is the number of generations. The reactivity

measure has a disadvantage: it is only meaningful if there is
actually a drop in performance when a change occurs. Otherwise,
nothing can be said about how well the algorithm reacts to
changes. In situations like the dynamic constrained benchmark
problems in [25,26] where the total fitness level of the search
space may increase after a change, the measure reactivity cannot
be used. In addition, the measure is undefined in any period
where accuracyðtÞF,A is zero.

To provide more insights on the convergence behavior of
algorithms, recently a new measure, the absolute recovery rate

(ARR) was proposed [25].
The ARR measure is used to analyze how quick it is for an

algorithm to start converging on the global optimum before the next

change occurs

ARR¼
1

m

Xm
i ¼ 1

PpðiÞ
j ¼ 1½f bestði,jÞ�f bestði,1Þ�

pðiÞ½f nðiÞ�f bestði,1Þ�
ð9Þ

where f bestði,jÞ is the fitness value of the best solution since the last
change found by the tested algorithm until the jth generation of
the change period i, m is the number of changes and pðiÞ, i¼ 1 : m

is the number of generations at each change period i and f nðiÞ is
the global optimal value of the landscape at the ith change. The
ARR score would be equal to 1 in the best case when the algorithm
is able to recover and converge on the global optimum immedi-
ately after a change, and would be equal to zero in case the
algorithm is unable to recover from the change at all. Note that in
order to use the measure ARR we need to know the global
optimum value at each change period.

Fitness degradation over time. A recent experimental observa-
tion [68] showed that in DOPs the performance of an algorithm
might degrade over time due to the fact that the algorithm fails to
follow the optima after some changes have occurred. To measure
this degradation, in [68] a measure named b-degradation was
proposed. The measure is calculated by firstly using linear
regression (over the accuracy values achieved at each change
period) to create a regression line, then evaluate the measure as
the slope of the regression line. A positive b-degradation value
might indicate that the algorithm is able to keep track with the
moving optima. The measure however does not indicate whether
the degradation in performance is really caused by the long-term
impact of DOP, or simply by an increase in the difficulty level of
the problem after a change. In addition, a positive b-degradation

value might also not always be an indication that the algorithm is
able to keep track with the moving optima. In problems where
the total fitness level increases, like in the dynamic constrained
benchmark problems in [25,26] mentioned above, a positive
b-degradation can be achieved even when the algorithm stays at
the same place.

3.3. Performance measures for dynamic multi-objective

optimization

In the case of dynamic multi-objective problems, researchers
measured performance similar to the single-objective commu-
nity, except that in a first step the multiple objectives are reduced
to a single set performance criterion which has been commonly
used in static multi-objective optimization (e.g., hypervolume,
maximum spread, inverse generational distance). Then this mea-
sure is calculated after each certain period, mostly just before the
change occurs, so that eventually the values can be aggregated
over time, e.g., along the idea of offline performance [67,69–71].

Similar to the accuracy in single-objective optimization
(Eq. (5)), there was also an accuracy measure for multi-objective
optimization [72], which was defined as the ratio between the
current hypervolume and the maximum hypervolume achieved
so far (maximization case), or the ratio between the minimum
hypervolume so far and the current hypervolume (minimization
case). Based on this accuracy for MOO, a stability and a reactivity
measure values can be calculated the same way as in the single-
objective case using Eqs. (8) and (9).

3.4. Discussion

There are some open questions about performance measures in
EDO. First, it is not clear if optimality is the only goal of real-world
DOPs and if existing performance measures really reflect what
practitioners would expect from optimization algorithms. So far, only
a few studies, e.g., [64,38,14], tried to justify the meaning of the
measures by suggesting some possible real-world examples where
the measures are applicable. It would be interesting to find the
answer for the question of what are the main goals of real-world
DOPs, how existing performance measures reflect these goals and
from that investigate if it is possible to make the performance
measures more specific (if needed) to suit practical requirements. In
[14, Chapter 3], a first attempt has been made to find out more
about the main optimization goals of real-world DOPs and the link
between existing performance measures and the goals of real-world
applications.

Second, most optimality-based measures are based on abso-
lute fitness values, while relative performance values may also be
interesting when comparing different algorithms. The accuracy

measure [58] is among the few studies that tried to normalize
fitness values at each change period using a window of the
maximum and minimum possible values. This requires full
knowledge of the maximum and minimum possible values at
each change period, which might not be available in practical
situations, while the normalized score proposed in [14] does not
require this problem-specific knowledge.

Third, although the behavior-based measures are usually used
complementary with the optimality-based measures, it is not clear
if the earlier really correlate with the latter. Recent studies [68]
have shown that the behavior-based measure stability does not
directly relate to the quality of solutions and the results of
the behavior-based measure reactivity are ‘‘usually insignificant’’
[73,68]. It would be interesting to systematically study the
relationship between behavior-based measures and optimality-
based measures, and more importantly the relationship between
the quality of solutions and the assumptions of the community
about the expected behaviors of dynamic optimization algorithms.
4. Optimization approaches

4.1. The goals of dynamic evolutionary algorithms

In stationary optimization usually the goal is to find the global
optimum as quickly as possible. When the considered problem is
time-varying, the goal becomes to track the changing optimum.
The general assumption is that the problem after a change is
somehow related to the problem before the change, and thus an
optimization algorithm needs to learn from its previous search
experience as much as possible to hopefully advance the search
more effectively.

The following sections will briefly review typical approaches in
EDO that have been proposed to satisfy the goals above. We will
discuss the strengths and weaknesses of the approaches and their
suitability for different types of problems.

Many of the approaches explicitly react to a change. If the
occurrence of a change is not explicit, it has to be detected. Thus
we start with a section on change detection.

T.T. Nguyen et al. / Swarm and Evolutionary Computation 6 (2012) 1–2412
4.2. Detecting a change

Many EDO approaches take explicit action to respond to a change
in the environment. This either assumes that changes in the
environment are made known to the algorithm, or that the algo-
rithm has to detect the change. This section therefore discusses
change detection mechanisms, categorized into (a) detecting change
by re-evaluating dedicated detectors and (b) detecting change based
on algorithm behavior.

4.2.1. Detecting change by re-evaluating solutions

Overview. Detecting changes by re-evaluating solutions is by
far the most common change-detection approach. The algorithm
regularly re-evaluates some specific solutions (detectors) to
detect changes in their function values and/or feasibility. Detec-
tors can be a part of the population, such as the current best
solutions [74–76,14], a memory-based sub-population [20,77], or
a feasible sub-population [14,59].

Detectors can also be maintained separately from the search
population. In this case they can be just a fixed point [78], one or a
set of random solutions [79,80,47], a regular grid of solutions/set
of specifically distributed of solutions [13], or a list of found peaks
[81,82].

Strengths and weaknesses. Because using detectors involves
additional function evaluations, it might be necessary to identify
an optimal number of detectors to maximize algorithm perfor-
mance. Most existing methods just use one or a small number of
detectors to avoid being affected by additional evaluation cost.
However, in situations where only some parts of the search space
change, e.g., in [25,26,47] and in a list of real-world problems
cited in [14], using only a small number of detectors might
not guarantee that changes are detected [47]. A number of recent
attempts has been made to overcome this drawback. In
[13,47,14], different methods were considered to study the
optimal number of detectors depending on the size and complex-
ity of the solved problem. A theoretical analysis in [13] showed
that problem dimensionality is a prominent factor in the success
of change detection. This finding was later confirmed in the
experiments in [47].

The clear advantage of re-evaluating dedicated detectors is
that it allows ‘‘robust 100% detection’’ if a high enough number of
detectors is used [47]. Richter [47] also showed that the more
difficult change detection is, the more favorable is the approach of
re-evaluating dedicated detectors, which was called ‘‘sensors’’ by
the author.

Re-evaluating dedicated detectors also have some disadvan-
tages. First, there is the additional cost due to that detectors have
to be re-evaluated at every generation. Second, this approach
might not be accurate when used in problems with noisy fitness
function because noises may mislead the algorithm to thinking
that a change has occurred [83].

4.2.2. Detecting changes based on algorithm behavior

Overview. In [53] and many following studies that use the
same idea, changes are detected based on monitoring the drop in
value of the average of best found solutions over a number of
generations. In a swarm-based study [83] where the swarm was
divided into a tree-based hierarchy of sub-swarms, environmen-
tal change was detected based on observation of changes in the
hierarchy itself. In [13], the possibility of detecting changes based
on diversity, and the relationship between the diversity of fitness
values and the success rate of change detection, were studied. In
[47], changes were detected based on statistical hypothesis tests
to find the difference between distribution of the populations
from two consecutive generations. This technique has been
commonly used in environmental change detection in the real-
world applications of biomedicine, data mining and image pro-
cessing, as can be seen in the references cited in [47].

Strengths and weaknesses. Methods that detect changes based
on algorithm behaviors have the advantage of not requiring any
additional function evaluations. However, because no dedicated
detector is used, there is no guarantee that changes are detected
[47]. In addition, this approach may cause false positives and
hence cause the algorithm to react unnecessarily when no change
occurs. Evidence of false positives was found in [83,47,25]. For
example, in [25, Section IV-C5] it was shown that the change
detection method based on monitoring the drop in value of best
found solutions can give false positive indications in non-elitism
genetic algorithms on constrained dynamic problems. Another
possible disadvantage is that some change detection methods
following this approach might be algorithm-specific, such as the
method of monitoring swarm hierarchy in [83].
4.3. Introducing diversity when changes occur

4.3.1. Overview

In stationary optimization, the convergence of an evolutionary
algorithm is required so that the algorithm can focus on finding
the best solution in the promising area that it has already found.
In dynamic optimization, however, convergence may be detri-
mental. This is because if the dynamic landscape changes in one
area and there is no member of the algorithm in this area, the
algorithm will not be able to react to the change effectively and
hence might fail to track the moving global optimum.

Intuitively one simple solution for this drawback is to increase
the diversity of an EA after a change has been detected. This
solution is described in the pseudo-code of Algorithm 1.

Algorithm 1. Introducing diversity after detecting a change.
1.
 Initialize: Initialize the population

2.
 For each generation

(a) Evaluate: Evaluate each member of the population
(b) Check for changes: Detect changes by monitoring possible

signs of changes, e.g., a reduction in the best fitness values,
or re-evaluation of old solutions

(c) Increase diversity: If change occurs, increase population’s
diversity by changing the mutations (sizes or rates) or
relocating individuals

(d) Reproduce: Reproduce a new population using the adjusted
mutation/learning/adaptation rate

(e) Return to step 2a
Pioneer studies following this solution are hyper-mutation
[53] and variable local search (VLS) [84,85]. They differ mostly in
step 2c (Algorithm 1) where different strategies are used to
introduce diversity to the population. In his research, Cob [53]
proposed an adaptive mutation operator called hyper-mutation
whose mutation rate is a multiplication of the normal mutation
rate and a hyper-mutation factor. The hyper-mutation is invoked
only after a change is detected. In the VLS algorithm, the mutation
size is controlled by a variable local search range. This range
is determined by the formula ð2BITS

�1Þ where BITS is a value
adjustable during the search [86] or adapted using a learning
strategy borrowed from the feature partitioning algorithm by
Vavak et al. [84].

In [14], hyper-mutation was used in an EA to solve dynamic
constraint problems. Detectors are placed near the boundary of
feasible regions and when the feasibility of these detectors
changes, the EA increases its mutation rate to raise the diversity

T.T. Nguyen et al. / Swarm and Evolutionary Computation 6 (2012) 1–24 13
level to track the moving feasible regions. The mutation rate is
decreased again once the moving feasible region has been tracked
successfully.

Riekert and Malan [87] proposed adaptive Genetic Program-
ming which not only increased mutation, but also reduces elitism
and increases crossover probability after a change.

The idea of introducing diversity after a change has also been
used in dynamic multi-objective optimization (DMO). For exam-
ple, in a multi-population algorithm for DMO [67], when a change
is detected, random individuals and some competitor individuals
from other sub-populations are introduced to each sub-popula-
tion to increase diversity.

The approach of introducing diversity after changes is also
used in Particle Swarm optimization (PSO). Hu and Eberhart [74]
introduced a simple mechanism in which a part of the swarm or
the whole swarm will be re-diversified using randomization after
a change is detected. Janson and Middendorf [83] followed a more
sophisticated mechanism where additional to partial re-diversifi-
cation, after each change the swarm is divided into several sub-
swarms for a certain number of generations. The purpose of this is
to prevent the swarm from converging to the old position of the
global optimum too quickly. Daneshyari and Yen [88] proposed a
cultural-based PSO where after a change, the swarms are re-
diversified using a framework of knowledge inspired from the
belief space in Cultural Algorithms.

Recently, Woldesenbet and Yen [10] proposed a new adaptive
method named ‘‘relocation variable’’. In this method, after a
change individuals are relocated (mutated) to a position within
a specific radius, which is estimated based on the history of the
performance of the individual. The more sensitive the individual
is to changes, the larger the radius.

The diversity-introducing approach is still commonly used in
many recent EDO algorithms, e.g., [81,47,27,89–91].

4.3.2. Strengths and weaknesses

Because methods following this approach do not need to waste
their efforts on maintaining diversity all the time, they have a
clear advantage of fully focusing on the search process and only
react to changes once they are detected. In addition, methods like
hyper-mutation appear to be good in solving problems with
highly frequent changes where changes are small and medium.
This is because invoking mutations or distributing individuals
around an optimum resembles a type of ‘‘local search’’, which is
useful to observe the nearby places of this optimum. Thus, if the
optimum moves to nearby places, it might be tracked [86,84].

However, this approach has some drawbacks that might make it
not so suitable for certain type of problems. They are listed below:
�
 Dependence on whether changes are known/easy to detect or not:
To increase diversity after a change assumes that the occur-
rence of a change is know or can be easily detected.

�
 Difficulty in identifying the correct mutation size (in case of

hyper-mutation and VLS) or the number of sub-swarms (in case

of hierarchy PSO): too small steps will resemble local search
while too large steps will result in random search [12].

�
 Little information retained from previous search: Basically, once

the algorithm has converged, the only information carried over
from one stage of the problem to the next stage after a change
is the location of the previous optimum. Intuitively, a lot more
information could be relevant.

4.4. Maintaining diversity during the search

4.4.1. Overview

Another approach is to maintain population diversity through-
out the search process to avoid the possibility that the whole
population converges into one place, hence unable to either track
the moving optimum or detect a new competing peak (see
Algorithm 2).

Algorithm 2. Maintaining diversity.
1.
 Initialize: Initialize the population

2.
 For each generation

(a) Evaluate: Evaluate each member of the population
(b) Maintain diversity: Add a number of new, diversified indivi-

duals to the current population, or select more diversified
individuals, or explicitly relocate individuals to keep them
away from one another.

(c) Reproduce: Reproduce a new population
(d) Return to step 2a
Methods following this approach do not detect changes
explicitly. Instead they rely on their diversity to adaptively cope
with the changes. Typical examples of this approach are Random
Immigrants [54], fitness sharing [92], Thermo-Dynamical GA [93],
Sentinel Placement [13], Population-Based Incremental Learning
[94], several Particle Swarm Optimization (PSO) variants [95–98],
and dynamic evolutionary multi-objective optimization [99–101].

In the Random Immigrants method, in every generation a
number of generated random individuals are added to the
population to maintain diversity. Experimental results show that
the method is more effective in handling dynamics than the
regular EA [54]. It is reported that the high diversity level brought
by random immigrants also helps in handling constraints. In [14],
it was shown that when combined with the constraint-handling
repair method, random-immigrant significantly improve the per-
formance of the tested EA.

Morrison [13] followed a slightly different mechanism in
which instead of generating random individuals, his Sentinel
Placement method initializes a number of sentinels which are
specifically distributed throughout the search space. Experiments
show that this method might get better results than Random
Immigrants and Hyper-mutation in problems with large and
chaotic changes [13].

Two other approaches – Parallel PBIL (PPBIL2) and Dual PBIL
(DPBIL) – were proposed by Yang and Yao [94]. These methods
are based on the Population-based Incremental Learning (PBIL)
algorithm, which is a simple combination of population-based EA
and incremental learning. PBIL has an adjustable probability
vector which is used to generate individuals. After each genera-
tion the probability vector is updated based on the best found
solutions. It ensures that the vector will gradually ‘‘learn’’ the
appropriate value to generate high quality individuals. In PPBIL2,
Yang and Yao [94] improved PBIL for DOPs by maintaining two
parallel probability vectors: a vector similar to the original one in
PBIL and a random initialized probability dedicated to maintain
diversity during the search. The two vectors are sampled and
updated independently so that their sample sizes might be
adjusted based on their relative performance. To improve PBIL2
in dealing with large changes, Yang and Yao [94] proposed the
DPBIL where two probability vectors are dual with each other, i.e.,
given the first vector P1, the second vector P2 is determined by
P2½i� ¼ 1�P1½i� ði¼ 1, . . . ,nÞ, where n is the number of variables.
During the search only P1 needs to learn from the best generated
solution because P2 will change with P1 automatically. PBIL and
dual PBIL were also combined with random-immigrant in [52]
with better results than the original algorithms.

Diversity can also be maintained by rewarding individuals that
are genetically different to their parents [102]. In this approach, in
addition to a regular GA population, the algorithm maintains an

T.T. Nguyen et al. / Swarm and Evolutionary Computation 6 (2012) 1–2414
additional population where individuals are selected based on
their Hamming distance to their parents (to promote diversity)
and another population where individuals are selected based on
their fitness improvement compared to their parents (to promote
exploitation). By observing its own performance in stagnation and
population diversity, the algorithm adaptively adjusts the size of
the three populations to react to the dynamic environments.

In Evolutionary Strategy, diversity can also be maintained
by preventing the strategy parameters from converging to 0,
e.g., in [34].

The approach of maintaining diversity is also used in PSO to
solve dynamic continuous problems. In their charged PSOs
[96–98], Blackwell et al. applied a repulsion mechanism, which
is inspired from the atom field, to prevent particles/swarms to get
too closed to each other. In this mechanism, each swarm is
comprised of a nucleus and a cloud of charged particles which
are responsible to maintain diversity. There is a repulsion among
these particles to keep particles from approaching near to each
other. In [88], both the particle selection and replacement
mechanisms are modified so that the most diversified particles
(in terms of Hamming distance) are selected and the particles that
have similar positions are replaced. In the Compound PSO [103],
the degree of particles deviating from their original directions
becomes larger when the velocities become smaller, and distance
information was incorporated as one of the criteria to choose a
particle for the update mechanism.

Bui et al. [99] proposed using multiple objectives to maintain
diversity. The dynamic problem is represented as a two-objective
problem. The first objective is the original objective, and the
second is a special objective created to maintain diversity. Other
examples of using multiple objectives to maintain diversity can
be found in [100,101], where in the latter they proposed six
different types of objectives, including retaining more old solu-
tions; retaining more random solutions; reversing the first objec-
tive; keeping a distance from the closest neighbour; keeping a
distance from all individuals; and keeping a distance from the
best individual.

The diversity-maintaining strategy is still the main strategy
in many recent approaches, for example, see [98,97,14,95,94,52,
71,104–107].
4.4.2. Strengths and weaknesses

Methods following this approach can bring the following
advantages:
�
 May be good for solving problems with severe changes: Thanks to
its good diversity, in certain situations the approach is good to
solve problems with large changes (for example in [26,14] it
has been shown that random-immigrant help significantly
improve the performance in dynamic constrained problems
where changes are severe due to the presence of disconnected
feasible regions).

�
 May be good for solving problem with rare changes (as shown in

e.g., [92,94]). This is because for rare changes an algorithm
with high diversity may have enough time to converge.

�
 May be effective in solving problems with competing peaks (as

reported in [108]).

However, methods that maintain diversity throughout the
search also have some disadvantages as follows:
�
 Slow: Continuously focusing on diversity may slow down, or
even distract the optimization process [12].

�
 Not effective when the changes are small: Most methods

following this approach maintain their diversity by adding
some stochastic element throughout the search. Obviously it
will make the algorithm less effective in dealing with small
changes where the optima just take a slight move away from
their previous places [28].

4.5. Memory approaches

When changes in dynamic problems are periodical or recur-
rent, i.e., the optima may return to the regions near their previous
locations, it might be useful to re-use previously found solutions
to save computational time and to bias the search process. To re-
use old solutions in this manner, many researchers decided to add
some sort of memory components to their EAs. The memory can
also play the role as a reserved place for storing old solutions in
order to maintain diversity when needed. The memory can be
integrated implicitly as a redundant representation in the EAs, or it
could be maintained explicitly as a separate memory component.

4.5.1. Implicit memory

Redundant coding using diploid genomes are the most com-
mon implicit memory used in EAs for solving dynamic problems,
e.g., [17,109–112]. A diploid EA is usually an algorithm whose
chromosomes contain two alleles at each locus. Although most
normal EAs for stationary are haploid, it is believed that diploid, and
other multiploid approaches, are suitable for solving non-stationary
problems [109]. A pseudo-code for multiploid approaches for
dynamic environments is described in Algorithm 3, where the
following three components need to be incorporated: (i) represent
the redundant code; (ii)readjust the dominance of alleles; and (iii)
check for changes.

Algorithm 3. Multiploid EA for dynamic optimization.
1.
 Initialize: Initialize the population and the multiploid represen-
tation
2.
 For each generation

(a) Evaluate: Evaluate each member of the population
(b) For each individual:

i. Detect changes

ii. Adjust the dominance level of each allele: If there is any
change, adjust the dominance to accommodate the
current change

iii. Select the dominant alleles according to their dominance

level

(c) Reproduce: Reproduce a new population using the adjusted
mutations

(d) Return to step 2a
One typical way to represent the dominance of alleles is to use
a table [110,113] or a mask [114] mapping between genotypes
and phenotypes. The dominance then can be changed adaptively
among alleles depending on the detection of changes in the
landscape.

4.5.2. Explicit memory

Methods that maintain the memory explicitly are described by
the pseudo-code in Algorithm 4.

Algorithm 4. Using explicit memory.
1.
 Initialize:
(a) Initialize the population
(b) Initialize the explicit memory
2.
 For each generation

(a) Evaluate each member of the population
(b) Update the memory

T.T. Nguyen et al. / Swarm and Evolutionary Computation 6 (2012) 1–24 15
(c) Reproduce a new population
(d) Use information from the memory to update the new

population
(e) Return to step 2a
Methods following this approach need to accomplish four
tasks:
1.
 Decide the content of the explicit memory: The content of the
memory can be either:
(a) Direct memory: In most cases the direct memories are

the previous good solutions/local optima [20,52,88,91,
115–123]. In [120] for certain circumstances the most
diversified solutions (in terms of standard deviation of
fitness) are also selected for the memory. In [88] a set of
previous positions and the corresponding fitness values of
each individual may also be stored in the memory.

(b) Associative memory: Various types of information can be
included in the associative memory, for example the
information about the environment at the considered time
[124,125]; the list of environmental states and state
transition probabilities [126]; the most common allele in
the population for each locus [91]; the probability vector
that created the best solutions [52]; the distribution
statistics information of the population at the considered
time [119]; the probability of the occurrence of good
solutions in each area of the landscape [127,90]; or the
probability of likely feasible regions [27]. An interesting
example of associative memory was shown in Artificial
Immune Systems (AISs) [128,129]. In these methods,
changes in a dynamic environment are usually viewed as
antigens and the ‘‘building blocks’’ (gene segments) from
successful individuals in the past are considered as anti-
bodies. The gene segments are stored as memory in a gene
library so that they can be recalled whenever a change
occurs. To identify which gene segments (antibodies)
should match with a particular antigen (change in the
environment), each individual in the gene library is asso-
ciated with the average fitness of the population at the
moment it was stored [128].
2.
 Decide how to update the memory: Generally the best found
elements (direct or associative) of the current generation will
be used to update the memory. These newly found elements
will replace some existing elements in the memory, which can
be one or some of the followings:
(a) The oldest member in the memory [124,130,29,10].
(b) The one with the least contributions to the diversity of the

population [20,124,130,118,52,131]. One common way
to evaluate this criterion is to examine the similarity of
elements in the memory, for example evaluating the
minimum distance among all pairs of memory elements
[20,130]. In this case the less fit one of a pair will be
replaced.

(c) The one with least contribution to fitness [124].

3.
 Decide when to update the memory: Ideally if we know exactly

when a change happens, then the most suitable time to update
the memory is right after the time the change happens.
However, in general it might not always be possible to know
exactly when a change happens. As a result the memory may
also be updated after each generation or after a certain number
of generations. Doing so might also favor diversity, for exam-
ple see [1,132,120].
4.
 Decide how to use the memory: Usually the best elements in the
memory (i.e., the ones that show the best results when re-
evaluated) will be used to replace the worst individuals in the
population. Replacement can take place after each generation
or after a certain number of generations, or it can be done after
each change if the change can be recognized.
4.5.3. Strengths and weaknesses

Here are the advantages of using memory-based approaches:
1.
 Effective for solving problems with cyclic environments. Thanks
to their ability to recall old solutions from the memory,
memory-based approaches are especially suitable for solving
problems with cyclic changes. For example, Yang [65] showed
that the memory-based versions of GA and random-immigrant
significantly outperform the original algorithms in cyclic
dynamic environments.
2.
 May be good in slowing down convergence and favor diversity

[1,132].

Memory approaches, however, also have some disadvantages
that may require them to be integrated with some other methods
for the best results:
1.
 Might be useful only when optima reappear at their previous

locations or if the environment returns to its previous states. In
the experiments, Lewis et al. [109] showed that redundant
coding does not ensure enough diversity to adapt to random
changes. Branke [20] also mentions that some explicit memory
approaches might no longer be effective if the oscillation does
not bring the global optimum to the exact previous location
but a slightly different one [1].
2.
 Might not be good enough to maintain diversity for the popula-

tion, and in fact, memory may not be very useful unless
combined with some diversity mechanism as pointed out by
Branke [20]. Recently, several studies have tried to improve
this disadvantage by combining memory-based approaches
with diversity schemes, e.g., [130,65].
3.
 Redundant coding approaches might not be good for cases where

the number of oscillating states is large. There are two reasons
for this:
(a) First, the redundant code might become too large, hence

reduce the performance of the algorithm.
(b) Second, in practice it might not always be possible to know

the number of oscillating states before hand. Without this
information, it is impossible to design an appropriate
representation for the redundant code.
4.
 The information stored in the memory might become redundant

(and obsolete) when the environment changes. This redundancy
may affect the performance of the algorithm. For example,
Branke [18] empirically showed that memories are of no use if
there is no recurrence in the environments.

4.6. Prediction approaches

4.6.1. Overview

In certain cases, changes in dynamic environments may exhibit
some patterns that are predictable. In this case, it might be sensible to
try to learn these types of patterns from the previous search
experience and based on these patterns try to predict changes in
the future. Some studies have been made following this idea to
exploit the predictability of dynamic environments. Obviously, mem-
ory approaches, which are proposed to deal with periodical changes,
can also be considered a special type of prediction approaches.
However, generally methods following the prediction approach are
able to use their memory to cope with more various types of changes
than only cyclic/recurrent changes. A pseudo-code describing predic-
tion approaches is shown in Algorithm 5.

T.T. Nguyen et al. / Swarm and Evolutionary Computation 6 (2012) 1–2416
Algorithm 5. Prediction approach to solve dynamic problems.
1.
 Initialize phase:
(a) Initialize the population
(b) Initialize the learning model and training set
2.
 Search for optimum solutions and detect changes
3.
 If a change is detected

(a) Use the current environment state as the input for the
learning model

(b) Use the learning model to estimate the type of this
current change and/or how the next change should be

(c) Generate new/recall old individuals that best match with
the estimation

(d) Search for the new optimum using the new population
(e) Update the training set based on the search results
(4)
 Return to step 2
A common prediction approach is to predict the movement of
the moving optima. Hatzakis and Wallace [69] combined a
forecasting technique (autoregressive) with an EA. This forecast-
ing technique is used to predict the location of the next optimal
solution after a change is detected. The forecasting model (time
series model) is created using a sequence of optimum positions
found in the past. Experimental results show that if this algorithm
can predict the movements of optima correctly, it can work well
with very fast changes. A similar approach was proposed in [133]
where the movement of optima was predicted using Kalman
filters. The predicted information (the next location of the
optimum) is incorporated into an EA in three ways: first, the
mutation operator is modified by introducing some bias so that
individuals’ exploration is directed toward the predicted region.
Second, the fitness function is modified so that individuals close
to the estimated future position are rewarded. Third, some ‘‘gift’’
individuals are generated at the predicted position, and intro-
duced into the population to guide the search. Experiments on a
visual tracking benchmark problem show that the proposed
method does improve the tracking of the optimum, both in terms
of distance to the real position and smoothness of the tracking.

Another approach is to predict the locations that individuals
should be re-initialized to when a change occurs. In [37] this
approach is used to solve two dynamic multi-objective optimiza-
tion benchmark problems in two ways: first, the solutions in the
Pareto set from the previous change periods were used as a time
series to predict the next re-initialization locations. Second, to
improve the chance of the initial population to cover the new
Pareto set, the predicted re-initialization population is perturbed
with a Gaussian noise whose variance is estimated based on
the historical data. Compared with random-initialization, the
approach was able to achieve better results on the two tested
problems. Another approach to estimate the areas to re-initialize
individuals after a change occurs is the relocation variable
method [10] described in Section 4.3. This method to some
extents can also be considered a prediction method.

Another interesting approach is to predict the time when the
next change will occur and which possible environments will
appear in the next change [126,134]. In these works, the authors
used two prediction modules to predict two different factors. The
first module, which uses either a linear regression [126] or a non-
linear regression [134], is used to estimate the generation when
the next change will occur. The second module, which uses
Markov chain, monitors the transitions of previous environments
and based on this data provides estimations of which environ-
ment will appear in the next change. Experimental results show
that an EA with the proposed predictor is able to perform better
than a regular EA in cyclic/periodic environments.
Relating to prediction approaches, recently there are also some
studies [23,9,135,15,24] on time-linkage problems, i.e., problems
where the current solutions made by the algorithms can influence
the future dynamics. In such problems, it was suggested that the only
way to solve the problems effectively is to predict future changes and
take into account the possible future outcomes when solving the
problems online. Another related study is the anticipation approach
[136] in solving dynamic scheduling problems where in addition to
finding good solutions, the solver also tries to move the system ‘‘into
a flexible state’’ where adaptation to changes can be done more
easily. Specifically, because it is observed that in the tested dynamic
job-shop scheduling problem, the flexibility of the system can be
increased by avoiding early machine idle times, the authors proposed
a scheduling approach where in addition to the main optimality
objective, solutions with early idle time are penalized. The experi-
mental results show that such an anticipation approach significantly
improved the performance of the system.
4.6.2. Strengths and weaknesses

Methods following the prediction approach may become very
effective if their predictions are correct. In this case, the algo-
rithms can detect/track/find the global optima quickly, as shown
in [69,129,128].

However, prediction-based algorithms also have their own
disadvantages, mostly due to training errors. These errors might
be resulted from
1.
 Wrong training data: If the algorithm has not performed success-
fully in the previous change periods, the history data collected by
the algorithm might not be helpful for the prediction or might
even provide the wrong training data.
2.
 Lack of training data: As in the case of any learning/predicting/
forecasting model, the algorithms may need a large enough set
of training data to produce good results. It also means that the
prediction can only be started after sufficient training data has
been collected, e.g., [126,134,23,9]. In the case of dynamic
optimization where there is a need of finding/tracking the
optima as quick as possible, this might be a disadvantage.
3.
 The nature of the dynamic problems:
� If changes in the dynamic environment are easily predictable

(e.g., linear, periodical or deterministic), the result is expected
to be good, as can be seen in [69,133].
� However, if the changes are stochastic, or history data is

misleading, prediction approaches might not get satisfiable
results. For example, [15,24] illustrated a situation where
history data are actually inappropriate for the prediction
and might even mislead the predictor to get worse results.
4.7. Self-adaptive methods

Another approach is to make use of the self-adaptive mechan-
isms of EAs and other meta-heuristics to cope with changes.
To some extent this approach closely relates to the prediction
approach, because deep down self-adaptation is the outcome of a
process involving learning and predicting based on history data.

One example is the GA with Genetic Mutation Rate [41], which
allows the algorithm to evolve its own mutation strategy parameters
during the search process based on the fitness of the population. In
this method, the mutation rate is encoded in genes and is influenced
by the selection process. The algorithm was tested in both gradual
and abrupt dynamic landscapes. The results show that the algorithm
has better performance than a standard GA. However, it is still not
better than hyper-mutation (see Section 4.3 and [53])—a method that
increases its mutation rate after each change.

T.T. Nguyen et al. / Swarm and Evolutionary Computation 6 (2012) 1–24 17
A similar method was proposed by Ursem in his Multinational
Genetic Algorithm (MGA) [137]. Five different parameters (prob-
ability for mutation, probability for crossover, selection ratio,
mutation variance and distance) are encoded in the genomes of
his MGA for adaptation. The adaptation mechanism works well in
simple cases where the velocity of moving peaks is constant.
However, in cases where the velocity is not constant, the adapta-
tion seems to be not fast enough. These two results show the
difficulty of applying adaptive parameter tuning to complex
dynamic optimization.

Some researchers also expressed their interests in using the self-
adaptive mechanism of such EAs as Evolution Strategy (ES) or EP
(Evolutionary Programming) in dynamic optimization. Angeline [138]
examined self-adaptive EP (saEP) and showed that the strategy is not
effective for all types of tested problems. Bäck [8] showed that the
log-normal self-adaptation in ES may perform better than saEP.
Experiments pointed out that algorithm implementation and para-
meter settings have much less influence on ES in dynamic environ-
ments than in stationary environments [61] and that ES might
be unreliable in rapidly changing environment [60]. Weicker [7]
also argued that it is possible that the Gaussian mutation in the
standard ES self-adaptation might not be appropriate for dynamic
optimization.

There are some mathematical analyses on the performance of self-
adaptive ES in dynamic environments. Arnold and Beyer [139]
pointed out that the cumulative mutation step-size adaptation of ES
can work well on a variant of the sphere model with random
dynamics of the target. The strategy can realize optimal mutation
step-size for the model. However, in the sphere modal with linear
dynamics, another research of Arnold and Beyer [140] revealed that
the mutation step-size realized by ES is not the optimal one (but the
adaptation still ensures that the target can be tracked).

4.8. Multi-population approaches

4.8.1. Overview

Another approach, which to some extent can be seen as a
combination of diversity maintaining/introducing, memory and
adaptation, is to maintain multiple sub-populations concurrently.
Each sub-population may handle a separate area of the search
space. Each of them may also take responsibility for a separate
task. For example, some sub-populations may focus on searching
for the global optimum while some others may concentrate on
tracking any possible changes. These two types of populations
then may communicate with each other to bias the search. A
pseudo-code of a typical multi-population approach is shown
below as Algorithm 6.

Algorithm 6. Multi-population approach.
1.
 Initialize:
(a) Initialize the set Psearch of sub-populations finding the

global optima
(b) Initialize the set Ptrack of sub-populations tracking changes

in the landscape

2.
 For each generation:

(a) Search for optima: Sub-populations in Psearch find the
global optima

(b) Track changes: Sub-populations in Ptrack track any changes
(c) Maintain diversity: Re-allocate/split/merge the sub-popula-

tions so that they are not overlapped and can cover a
larger area of the search space

(d) Adjust: Re-adjust each sub-population in Psearch based on
the experience from sub-populations in Ptrack

(e) Reproduce each sub-population
(f) Return to step 2a
As can be seen, methods following the approach of using
multiple populations usually need to accomplish two goals: first,

they may need to assign different types of tasks to different sub-
populations, for example Psearch to search and Ptrack to track, so
that the search can be done effectively. Second, they need to
divide the sub-populations appropriately and make sure that the
sub-populations are not overlapped to have the best diversity and
also to avoid the situation where many sub-populations find the
same peak.

For the first goal, assigning different tasks to the sub-populations,
different methods have different approaches. One approach
was proposed by Oppacher and Wineberg [63] in their Shifting
Balance GA (SBGA). In SBGA, there are a number of small
populations in Psearch searching for new solutions and there is
only one large population in Ptrack to track changing peaks.

Another method, the Self-Organizing Scouts (SOS) [141], follows a
different direction which uses the main large population to search for
optima (Psearch) and dedicates several small populations to track any
change of each optimum that the algorithm has found so far (Ptrack).
Whenever the main population finds a new peak, it will create a new
sub-population to track changes in this peak. This approach was
adopted in different types of EAs and meta-heuristics, e.g., GA [104],
DE [142,143], and PSO [98,144]. Relating to using one large popula-
tion to search and a smaller population to track changes, an algorithm
named RepairGA for solving dynamic constrained problems was
proposed in [26,59]. In this method, a large sub-population is
dedicated to searching and one smaller sub-population is dedicated
to tracking the moving feasible regions. The difference between
RepairGA and previous approaches is that in RepairGA the two sub-
populations are allowed to overlap in the search space because their
main purpose is not to maintain diversity. What distinguishes the
two sub-populations in this work is that the main population accepts
both infeasible and feasible solutions while the sub-population
contains only feasible solutions.

Another approach, the Multinational GA (MGA), introduced by
Ursem [137], integrates both the functions of Psearch and Ptrack into
each sub-population. It means that each population can both
search for new solutions and track changes. Whenever a sub-
population detects a new optimum, it will split into two sub-
populations to make sure that each sub-population only tracks
one optimum at a time. This approach has been used not only in
EAs but also in artificial immune algorithms, for example [105].
The approach is also used by PSO-based algorithms for dynamic
optimization. One example is the Speciation PSO [75] where each
sub-population, or species, is a hyper-sphere defined by the best
fit individual and a specific radius. Another recent PSO example
that also has multi-swarms with equal roles is the Clustering PSO
in [145,146].

Relating to the goal of assigning the tasks to sub-populations,
it should be noted that in dynamic optimization multiple popula-
tions are used not only for the purpose of exploring different parts
of the search space, but also for the purpose of co-evolution
[67,26,59] or maintaining diversity and balancing exploitation/
exploration [102].

For the second goal, dividing the sub-populations and making

sure that the sub-populations are not overlapping, there are also
different approaches. The most common approach is clustering:
choosing some solutions in the population as the centers of the
future clusters, then defining each sub-population as a hyper-
cube or sphere with a given size. All individuals within the range
of a hyper-cube/sphere will belong to the corresponding sub-
population of that hyper-cube/sphere. SOS [141] is one of the
earliest methods that adopt this approach. It keeps the sub-
populations from being overlapped by using an idea borrowed
from the Forking Genetic Algorithm (FGA) [147] to divide up the
space. Whenever the main population in Psearch finds a new

T.T. Nguyen et al. / Swarm and Evolutionary Computation 6 (2012) 1–2418
optimum, it creates a new population in Ptrack and assign this new
population to the optimum. To separate the sub-populations, SOS
[141] confines each sub-population to a hyper-cube determined by a
center (the most fit individual in the population) and a pre-defined
range. If an individual of one sub-population ventures to the area
monitored by another sub-population, this individual will simply be
discarded and re-initialized (this process is called exclusion). The
same forking approach is also used in other EAs, e.g., DE [142,143].
Similar approaches are also used in PSO. For example, in Multi-
swarm PSO (mPSO) [97], swarms are also divided into sub-swarm in
the same way as in SOS so that each swarm watches a different
peak. In addition, mPSO also maintains a similar mechanism (named
anti-convergence) to the Psearch in SOS so that there is always one
free swarm to continue exploring the search space. Another example
is in Speciation PSO [75] where each species is a hyper-sphere
whose center is the best-fit individual in the species and each
species can be used to track a peak.

For clustering approaches, it is not always necessary to choose
the best solutions as the centers of the clusters. In recent
approaches [145,10], density-based clustering methods are also
used to divide/separate the sub-populations and to allow the
algorithms explore different parts of the search landscape. It was
reported that these density-based clustering techniques do help
to improve the performance, but at the expense of additional
computational cost to calculate the pair-wise distance among
particles. The clustering-based approach is still widely used in
recent EDO studies, e.g., in [104] to optimize the dynamic net-
work routing problems.

The second approach is to incorporate some mechanism of
penalty/rewarding to keep the sub-populations apart, of which
SBGA [63] is a typical example. SBGA maintains the separation of
populations by selecting individuals in Psearch for reproduction
according to their distance from the core in Ptrack rather than
according to their original fitness values. The further an individual
is from the core, the more likely that it will be reproduced.

The third approach is to estimate the basins of attractions of
peaks and use these basins as the separate regions for each sub-
population. MGA [137] is the first work following this approach.
The authors provided a mechanism called hill-valley detection:
given two individuals in the search spaces, they calculate the
fitness of several random samples on the line between these two
individuals. If the fitness in a sample point is lower than that of
the two individuals, then a valley is detected. If a sub-population
contains more than one valley, it will be split.
4.8.2. Strengths and weaknesses

Methods with the multi-population approach have the follow-
ing advantages:
1.
 Can maintain enough diversity for the algorithm to adaptively
start a new search whenever a new change appears. Examples
can be seen in the experiments in [18] where the proposed
multi-population algorithm (SOS) was able to cover most of
the peaks if given enough time while the non-multi-popula-
tion GA could not.
2.
3 In a (1þ1) EA, there is only one solution maintained in the population. In

each iteration, the unique solution acts as the parent to generate an offspring via

mutation. If the fitness of the offspring is not worse than the parent, the offspring
Able to recall some information from the previous generations

thanks to one (or several) population(s) dedicated for retaining
old solutions. This makes multi-population approaches usable
in solving certain recurrent dynamic problems. For example,
Ursem [137] and Branke [20] showed that the multi-popula-
tion MGA and memory-based EA were able to recall good old
solutions to deal with recurrent problems and hence out-
performed normal EAs.
will replace the parent; otherwise, the parent will survive into the next
3.

generation.
Can search/track the moves of multiple optima, as analyzed in
many existing studies on multi-population, e.g., [137,18].
4.
 Can be very effective for solving problems with competing peaks

or multimodal problems. A survey of Moser [148] showed that
among 19 surveyed algorithms that are designed to solve the
multimodal competing peaks benchmark Moving Peaks, a
majority (15 out of 19) follows the multi-population approach.

The multi-population approach also has some disadvantages.
They are:
1.
 The number of populations is difficult to be defined as it depends
on the number of local optima.
2.
 The search area of each population, and the size of each popula-

tion, are difficult to be defined.

3.
 Too many sub-populations may slow down the search. For

example, Blackwell and Branke [97] showed that for their
multi-swarm PSO algorithm, if the number of sub-populations
(swarms) is larger than the number of peaks, the performance
of the algorithm decreases.
4.
 Limited size of memory or peaks that can be tracked.

4.9. Summary on the strengths and weaknesses of current

EAs for DOPs

From the literature review above we can conclude that
different EDO approaches seem to be best for different types of
problems. This is the reason why many recent studies try to
combine different approaches into one single algorithm to solve
the problems better. Overall, multi-population approaches seem
to be the most flexible approach to date. The survey also shows
that most existing methods were tested and evaluated only on
academic problems.
5. Theoretical development of EDO

Formally analyzing EC for static problems has been a central
theme in EC since the early days [149]. Besides static property
analyses, researchers have also analyzed EA’s dynamic behavior
by Markov chain models, including convergence reliability [150],
convergence rate [151], and expected time to reach an optimum
(i.e., the first hitting time) [152,153]. In contrast to the EA theory
for static problems, the research on EDO so far has mainly been
empirical. Theoretical analysis of EDO has just appeared in recent
years with only a few results. This is because analyzing EAs for
DOPs is much more difficult than analyzing EAs for static
problems due to the extra dynamics introduced in DOPs. The
theoretical studies on EDO so far are briefly reviewed as follows.

The early theoretical works on EDO mainly just extended the
analysis of simple EAs, e.g., the (1þ1) EA,3 for static optimization
to simple DOPs, e.g., the dynamic bit matching problem. This is
natural and has served as a good starting point. As a first
theoretical work on EDO, Stanhope and Daida [154] analyzed a
(1þ1) EA on the dynamic bit matching problem. They presented
the transition probabilities of the (1þ1) EA and showed that even
small perturbations in the fitness function could have a signifi-
cantly negative impact on the performance of the (1þ1) EA. Based
on the work by Stanhope and Daida [154], Branke and Wang [155]
developed an analytical model for a (1, 2) evolution strategy (ES)
and compared different strategies to handle an environmental
change within a generation on the dynamic bit matching problem.

T.T. Nguyen et al. / Swarm and Evolutionary Computation 6 (2012) 1–24 19
Droste [156] analyzed the first hitting time of a (1þ1) ES on
the dynamic bit matching problem, where exactly one bit is
changed with a given probability p after each function evaluation.
It was shown that the expected first hitting time of the (1þ1) ES
is polynomial if and only if p¼ Oðlog n=nÞ. Arnold and Beyer [139]
investigated the tracking behavior of an (m=m, l) ES with self-
adaptive mutation step-size on a single continuously moving
peak. They derived a formula to predict the tracking distance of
the population from the target. Jansen and Schellbach [157]
presented a rigorous performance analysis of the (1þl) EA on a
tracking problem in a two-dimensional lattice and showed that
the expected first hitting time strictly increases with the offspring
population size (i.e., l) whereas the expected number of genera-
tions to reach the target decreases with l. In [60], Weicker and
Weicker analyzed the behavior of ESs with several mutation
variants on a simple rotating dynamic problem. In [6], Weicker
presented a framework for classifying DOPs and used it to analyze
how the offspring population size and two special techniques for
DOPs affect the tracking probability of a ð1,lÞ-ES. Weicker [158]
also used Markov models to analyze the tracking behavior of
ð1,lÞ-ESs with different mutation operators for a discrete optimi-
zation problem with a single moving optimum.

More recently, in [159], Rohlfshagen et al. analyzed how the
magnitude and frequency of change may affect the performance
of the (1þ1) EA on two specially designed pseudo-Boolean
functions under the dynamic framework of the XOR DOP gen-
erator [118]. They demonstrated two counter-intuitive scenarios,
i.e., the algorithm is efficient if the magnitude of change is large
and inefficient when the magnitude of change is small, and the
algorithm is efficient if the frequency of change is very high and
inefficient if the frequency of change is sufficiently low. These
results allow us to gain a better understanding of how the
dynamics of a function may affect the runtime of an algorithm.

In addition to the above runtime analysis of EDO, as another
line of research, some theoretical studies on EDO have been
devoted to the analysis of dynamic fitness landscape. Branke
et al. [160] analyzed the changes of the fitness landscape due to
changes of the underlying problem instance and proposed a
number of measures that are helpful to understand what aspects
of the fitness landscape change and what information can be
carried over from one stage of the problem to the next. They
applied these measures to several instances of a multi-dimen-
sional knapsack problem. In [161], Branke et al. further analyzed
the role of representation on the fitness landscape based on the
dynamic multi-dimensional knapsack problem.

In [4,5], Rohlfshagen and Yao analyzed the properties of a
dynamic subset sum problem and investigated the correlation
between the dynamic parameters of the problem and the result-
ing movement of the global optimum. Interestingly, the authors
showed empirically that the degree to which the global optimum
moves in response to the underlying dynamics is correlated only
in specific cases. Their observations obtained here and in [159]
indicate that simply tracking an optimum is not sufficient in real-
world problems.

Tinos and Yang [44] analyzed the XOR DOP generator based on
a linear transformation matrix and showed that XOR does not
alter the underlying function but rotates each search point prior
to each fitness evaluation. In [162], Tinos and Yang further
analyzed the properties of the XOR DOP generator based on the
dynamical system approach of the GA in [163]. The authors
showed that a DOP generated by the XOR generator can be
described as a DOP with permutation, where the fitness landscape
is changed according to a permutation matrix. Hence, the XOR
DOP generator can be simplified by moving the initial population
of a change cycle instead of rotating each individual prior to each
fitness evaluation.
In [164,165], Richter constructed spatio-temporal fitness land-
scapes based on Coupled Map Lattices (CMLs). The idea of using
CML to construct dynamic fitness landscapes is interesting
since CML facilitates efficient computing of the fitness landscape
and can reveal a broad variety of complex spatio-temporal
behavior [166]. In [127,27], Richter further analyzed and quanti-
fied the properties of spatio-temporal fitness landscapes con-
structed from CML using topological and dynamical landscape
measures such as modality, ruggedness, information content,
epistasis, dynamic severity, and two types of dynamic complexity
measures, Lyapunov exponents and bred vector dimension.
Experiments were also carried out to study the relationship
between these landscape measures and the performance criteria
of an EA. These studies from Richter are interesting in terms of
helping us to relate the landscape measures to the behavior of
EDO algorithms.
6. Summary and future research directions

6.1. Summary

In this paper we have reviewed and categorized existing EDO
studies from several perspectives, namely benchmark problems
(Section 2), performance measures (Section 3), methodology
(Section 4), and theory (Section 5).

The review showed us the strengths and weaknesses of
different EDO methods. From the literature review, we can
conclude that each EDO approach seems to be suitable only for
certain types of DOPs, which conforms to the No Free Lunch
theorem [167]. The fact that each approach is likely to be suitable
to some particular classes of problems is also the reason why
many recent studies try to combine different approaches into one
single algorithm to solve the problems better.

The review showed us that there have been some recent works
on the theory behind EDO. These theoretical studies are still quite
basic. However, they have made very important first step toward
understanding EDO and will surely act as the basis for further
theoretical studies on EDO.

The review also identified the common assumptions of the
community about the characteristics of DOPs, which can be
summarized as follows:
�
 Optimization goals: Optimality is the primary goal or the only

goal in a majority of academic EDO studies, as evidently shown
by the large number of optimality-based measures reviewed in
Section 3. Some studies do pay attention to developing other
complementary measures (e.g., the behavior-based measures
in Section 3.2), but these complementary measures mainly
focus on analyzing the behaviors of the algorithms rather than
checking if the algorithms satisfy user requirements.

�
 The time-linkage property: Non time-linkage (the algorithm does

not influence the future dynamics) is the main focus of current

academic EDO research, as evidently shown by the fact that all
commonly used general-purpose benchmark problems are
non-time-linkage.

�
 Constraints: Unconstrained or bounded constrained problems are

the main focus of academic research, especially in the contin-
uous domain, as shown by the majority of academic bench-
mark problems. There is a clear lack of studies on constrained
and dynamic constrained problems.

�
 Visibility and detectability of changes: Most current EDO meth-

ods assume that changes either are known or can be easily
detected using a few detectors.

�
 Factors that change: The major aspect that changes in academic

problems is the objective function.

T.T. Nguyen et al. / Swarm and Evolutionary Computation 6 (2012) 1–2420
�

rea

sim

the
Predictability: The predictability of changes has increasingly
attracted the attention of the community. However, the
number of studies in this topic is still relatively small com-
pared to the unpredictable case.

�
 Periodicity: The periodicity of changes is a given assumption in

many mainstream approaches such as memory and prediction.

The literature review showed that not many of the assump-
tions above are backed up by evidence from real-world applica-
tions. This leads to the question of whether these assumptions
still hold in real-world dynamic optimization problems (DOPs)
and whether the considered characteristics are representative in
real-world applications. In the next subsection, we will discuss
this question in detail.

6.2. The gaps between academic research and real-world problems

The lack of a clear link between EDO academic research and
real-world scenarios has lead to some criticisms on how realistic
current academic problems are. Ursem et al. [168] questioned the
importance of current academic benchmarks by stating that ‘‘no
research has been conducted to thoroughly evaluate how well
they reflect characteristic dynamics of real-world problems’’;
Branke et al. [160] pointed out that ‘‘little has been done to
characterize and understand the nature of a change in real-world
problems’’; Rohlfshagen and Yao [4] criticized that ‘‘a large
amount of effort is directed at an academic problem that may
only have little relevance in the real world’’; and in [25,15], it has
been showed that there are some classes of real-world problems
whose characteristics have not been captured by existing aca-
demic research yet. [25] also showed evidence of situations where
existing EDO techniques could not solve certain classes of DOPs
effectively due to the uncaptured characteristics of DOPs.

Most recently, for the first time a detailed review [14,
Chapter 3] of a large set of recent ‘‘real’’4 real-world dynamic
optimization problems have been made to investigate the char-
acteristics of real-world problems and how they relate to the
characteristics of current academic benchmark problems.

The investigation in [14] pointed out certain gaps between
academic EDO research and real-world DOPs. First, current studies
in academic EDO do not cover all types of common dynamic
optimization problems yet. As shown in Section 2, the most
common type of DOPs that current academic research considers
are unconstrained, non-time-linkage problems. However, the study
in [14] showed that this type of problem occupies only a small part
of the surveyed applications. The study also found that there are two
types of problems that are very common in real-world situations but
received very little attention from the community: dynamic con-
strained problems and time-linkage problems.

Second, although many of the current EDO academic research
works only focus on one major optimization goal: optimality (to find
the best fitness value, as shown in Section 3.1), the study in [14]
showed that there might be many other common optimization
goals, for example (a) to provide a new (decent) solution quickly;
(b) to make sure that the after-change solution is not very different
from the before-change solution; (c) to make sure that the new
solutions are as close to a reference solution as possible; and (d) to
make sure that the future solutions must be in certain bounds.

Third, although most current EDO artificial benchmark pro-
blems have only one changing factor: the objective function as
shown in Section 2, the study in [14] showed that there are also
4 Only references that actually use real-world data or solve problems in actual

l-world situations were considered. Benchmark problems, even if designed to

ulate real-world applications, were not considered unless there is evidence that

data used to create the benchmark were taken from real-world applications.
other common types of changing factors: constraints, number of
variables, domain ranges and switch-mode changes.

In summary, the review in [14] showed that besides the
characteristics and assumptions commonly used in EDO academic
research, real-world DOPs also have other important types of
problems and problem characteristics that have not been studied
extensively by the EDO community. In order to solve real-world
DOPs more effectively, it is necessary to take these characteristics
and problem types into account when designing new algorithms,
performance measures and benchmark problems.

6.3. Future research directions

As reviewed in this paper, there have been quite a lot of
studies devoted to EDO and fruitful results have been achieved
over the last 20 years. However, the research domain of EDO is
still relatively young. Much more effort is needed to fully develop
and understand the domain of EDO. Some future research direc-
tions on EDO are highlighted and suggested as follows:
�
 Benchmark problem: The survey in this paper shows that most
existing methods were tested and evaluated only on academic
problems. The question then is to find out (i) what are the
common characteristics of existing academic problems; (ii) what
are the common criteria to evaluate EDO algorithms; and more
importantly (iii) whether these common characteristics and
evaluation criteria reflect the common situations in real-world
scenarios.
As mentioned before, the common assumptions of the EDO
community about the characteristics of DOPs are not totally
backed up by evidence from real-world applications. This leads
to the question of whether these academic assumptions still hold
in real-world DOPs and, if yes, then whether these assumptions
are representative in real-world applications and in what type of
applications do they hold. The review in [14] was the first study
which attempts to answer the above questions and it has pointed
out that there are certain gaps between current EDO academic
research and real-world applications. In future research on EDO,
further investigations should be made to close these gaps and
accordingly to bring EDO research closer to realistic scenarios.

�
 Methodology research: Although a number of EDO approaches

have been developed for solving DOPs, new efficient
approaches are still greatly needed to address different types
of DOPs. As the review has shown, different methods have
different strengths and weaknesses for different DOPs. Hence,
it is also worthy to further develop and investigate hybrid
methods for DOPs in the future. Here, it is very important to
develop adaptive systems that can deal with DOPs of different
characteristics. Active adaptability should also be addressed so
that future algorithms are able to effectively handle dynamics
even without change detection.

�
 Theoretical research: As mentioned before, the theoretical

studies on EDO are quite limited so far. The relative lack of
theoretical results on EDO makes it hard to fully justify the
strengths and weaknesses of EDO algorithms and predict their
behavior for different DOPs. Hence, theoretical studies on EDO
are greatly needed for the domain. As reviewed, the computa-
tional complexity analysis of EDO has started with a few
results. But, this line of research needs to be enhanced
significantly in order to gain insights as to what DOPs are
hard or easy for what types of EDO algorithms. Here, techni-
ques for analyzing evolutionary optimization for static pro-
blems, e.g., drift analysis [153,169], may be applied or adapted
to analyze EDO.
Dynamic behavior analysis of EDO algorithms needs also to be
pursued or enhanced. For many real-world DOPs, it is more

T.T. Nguyen et al. / Swarm and Evolutionary Computation 6 (2012) 1–24 21
useful to know how well an algorithm tracks the moving
optimal solution(s) within certain acceptable error levels
rather than whether and how fast the algorithm could hit
the moving optima. Hence, we need to analyze EDO regarding
such properties as tracking error and tracking velocity.

�
 Application research: In this paper, we have mainly focused on

reviewing academic research on EDO although there have
been a number of real-world application studies on EDO, for
example, see [104,170–172,14]. However, the number of EDO
application studied so far is significantly below expectation.
Researchers in the EDO domain need to consider and model
more real-world DOPs, which is a challenging task, and apply
EDO and other meta-heuristic methods to solve them in the
future. This will further justify and promote the domain of
EDO in particular and the domain of optimization in dynamic
environments in general.

Acknowledgement

The authors are grateful to the Editor-in-Chief and anonymous
reviewers for their thoughtful suggestions and constructive com-
ments. This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC) of UK under Grant
EP/E058884/1, Grant EP/E060722/1, and Grant EP/E060722/2,
and a UK ORS Award and a studentship from the School of
Computer Science, University of Birmingham.

References

[1] J. Branke, Evolutionary approaches to dynamic environments—updated
survey, in: GECCO Workshop on Evolutionary Algorithms for Dynamic
Optimization Problems, 2001, pp. 27–30.

[2] S. Yang, Y. Jin, Y.S. Ong (Eds.), Evolutionary Computation in Dynamic and
Uncertain Environments, Springer-Verlag, Berlin, Heidelberg, 2007.

[3] V.S. Aragon, S.C. Esquivel, An evolutionary algorithm to track changes of
optimum value locations in dynamic environments, Journal of Computer
Science and Technology 4 (3) (2004) 127–134.

[4] P. Rohlfshagen, X. Yao, Attributes of dynamic combinatorial optimisation,
in: International Conference on Parallel Problem Solving from Nature, PPSN,
Lecture Notes in Computer Science, vol. 5361, 2008, pp. 442–451.

[5] P. Rohlfshagen, X. Yao, On the role of modularity in evolutionary dynamic
optimisation, in: IEEE Congress on Evolutionary Computation, CEC, 2010,
pp. 3539–3546.

[6] K. Weicker, An analysis of dynamic severity and population size, in:
M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J. Merelo,
H.-P. Schwefel (Eds.), International Conference on Parallel Problem Solving
from Nature, PPSN, Lecture Notes in Computer Science, vol. 1917, Springer,
2000.

[7] K. Weicker, Evolutionary Algorithms and Dynamic Optimization Problems,
Der Andere Verlag, 2003.

[8] T. Bäck, On the behavior of evolutionary algorithms in dynamic environ-
ments, in: IEEE International Conference on Evolutionary Computation,
IEEE, 1998, pp. 446–451.

[9] P.A.N. Bosman, Learning and anticipation in online dynamic optimization,
in: S. Yang, Y.-S. Ong, Y. Jin (Eds.), Evolutionary Computation in Dynamic
and Uncertain Environments, Studies in Computational Intelligence, vol. 51,
Springer, 2007, pp. 129–152.

[10] Y.G. Woldesenbet, G.G. Yen, Dynamic evolutionary algorithm with variable
relocation, IEEE Transactions on Evolutionary Computation 13 (3) (2009)
500–513.

[11] C. Cruz, J.R. Gonzalez, D.A. Pelta, Optimization in dynamic environments: a
survey on problems, methods and measures, Soft Computing 15 (7) (2011)
1427–1448.

[12] Y. Jin, J. Branke, Evolutionary optimization in uncertain environments—a
survey, IEEE Transactions on Evolutionary Computation 9 (3) (2005)
303–317.

[13] R.W. Morrison, Designing Evolutionary Algorithms for Dynamic Environ-
ments, Springer-Verlag, Berlin, 2004, ISBN 3-540-21231-0.

[14] T.T. Nguyen, Continuous Dynamic Optimisation Using Evolutionary Algorithms,
Ph.D. Thesis, School of Computer Science, University of Birmingham, /http://
etheses.bham.ac.uk/1296S and /http://www.staff.ljmu.ac.uk/enrtngu1/theses/
phd_thesis_nguyen.pdfS, January 2011.

[15] T.T. Nguyen, X. Yao, Dynamic time-linkage problem revisited, in:
M. Giacobini, P. Machado, A. Brabazon, J. McCormack, et al., (Eds.), European
Workshops on Applications of Evolutionary Computation, EvoWorkshops,
Lecture Notes in Computer Science, vol. 5484, 2009, pp. 735–744.
[16] L. Fogel, A. Owens, M. Walsh, Artificial Intelligence through Simulated
Evolution, John Wiley & Sons Inc., 1966.

[17] D.E. Goldberg, R.E. Smith, Nonstationary function optimization using
genetic algorithms with dominance and diploidy, in: J.J. Grefenstette (Ed.),
International Conference on Genetic Algorithms, Lawrence Erlbaum Associ-
ates, 1987, pp. 59–68.

[18] J. Branke, Evolutionary Optimization in Dynamic Environments, Kluwer, 2001.
[19] C.-K. Goh, K.C. Tan, Evolutionary Multi-objective Optimization in Uncertain

Environments: Issues and Algorithms, Springer Publishing Company, Incor-
porated, 2009.

[20] J. Branke, Memory enhanced evolutionary algorithms for changing optimi-
zation problems, in: IEEE Congress on Evolutionary Computation, CEC, vol.
3, IEEE, 1999, pp. 1875–1882.

[21] A. Younes, Adapting Evolutionary Approaches for Optimization in Dynamic
Environments, Doctor of Philosophy (PhD) in Systems Design Engineering,
Faculty of Engineering, University of Waterloo, Canada, Faculty of Engineer-
ing, University of Waterloo, Canada, 2006.

[22] S. Yang, Constructing dynamic test environments for genetic algorithms
based on problem difficulty, in: IEEE Congress on Evolutionary Computa-
tion, CEC, vol. 2, 2004, pp. 1262–1269.

[23] P.A.N. Bosman, Learning, anticipation and time-deception in evolutionary
online dynamic optimization, in: S. Yang, J. Branke (Eds.), GECCO Workshop
on Evolutionary Algorithms for Dynamic Optimization, 2005.

[24] T.T. Nguyen, Z. Yang, S. Bonsall, Dynamic time-linkage problems—the chal-
lenges, in: IEEE RIVF International Conference on Computing and Communica-
tion Technologies, Research, Innovation, and Vision for the Future, http://dx.doi.
org/10.1109/rivf.2012.6169823, in press.

[25] T.T. Nguyen, X. Yao, Continuous dynamic constrained optimisation—the
challenges, IEEE Transactions on Evolutionary Computation [online], URL:
/http://www.staff.ljmu.ac.uk/enrtngu1/Papers/Nguyen_Yao_DCOP.pdfS, http://
dx.doi.org/10.1109/TEVC.2011.2180533, in press.

[26] T.T. Nguyen, X. Yao, Benchmarking and solving dynamic constrained
problems, in: IEEE Congress on Evolutionary Computation, CEC, IEEE Press,
2009, pp. 690–697.

[27] H. Richter, Memory design for constrained dynamic optimization problems,
in: The European Conference on the Applications of Evolutionary Computa-
tion, EvoApplications, Lecture Notes in Computer Science, vol. 6024,
Springer, 2010, pp. 552–561.

[28] H.G. Cobb, J.J. Grefenstette, Genetic algorithms for tracking changing
environments, in: International Conference on Genetic Algorithms, Morgan
Kaufmann, 1993, pp. 523–530.

[29] K. Trojanowski, Z. Michalewicz, Searching for optima in non-stationary
environments, in: IEEE Congress on Evolutionary Computation, CEC, vol. 3,
IEEE, 1999, pp. 1843–1850.

[30] C. Li, S. Yang, T.T. Nguyen, E.L. Yu, X. Yao, Y. Jin, H.-G. Beyer, P.N. Suganthan,
Benchmark Generator for CEC 2009 Competition on Dynamic Optimization,
Technical Report, University of Leicester and University of Birmingham, UK,
2008.

[31] M. Abello, L.T. Bui, Z. Michalewicz, An adaptive approach for solving
dynamic scheduling with time-varying number of tasks—part I, in: IEEE
Congress on Evolutionary Computation, CEC, 2011, pp. 1711–1718.

[32] Markus Olhofer, Yaochu Jin, Bernhard Sendhoff, Adaptive encoding for
aerodynamic shape optimization using Evolution Strategies, in: Congress
on Evolutionary Computation, 2001, pp. 576–583.

[33] Y. Jin, M. Olhofer, B. Sendhoff, On evolutionary optimization of large problems
using small populations, in: The First International Conference on Advances in
Natural Computation, ICNC 2005, Part II, 2005, pp. 1145–1154.

[34] Y. Jin, B. Sendhoff, Constructing dynamic optimization test problems using
the multi-objective optimization concept, in: G.R. Raidl (Ed.), Applications
of Evolutionary Computing, Lecture Notes in Computer Science, vol. 3005,
Springer, 2004, pp. 525–536.

[35] M. Farina, K. Deb, P. Amato, Dynamic multiobjective optimization pro-
blems: test cases, approximations, and applications, IEEE Transactions on
Evolutionary Computation 8 (5) (2004) 425–442.

[36] M. Helbig, A. Engelbrecht, Archive management for dynamic multi-objective
optimisation problems using vector evaluated particle swarm optimisation,
in: IEEE Congress on Evolutionary Computation, CEC, 2011, pp. 2047–2054.

[37] A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, E. Tsang, Prediction-based population
re-initialization for evolutionary dynamic multi-objective optimization, in:
S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, T. Murata (Eds.), Evolutionary
Multi-Criterion Optimization, Lecture Notes in Computer Science, vol. 4403,
Springer, Berlin, Heidelberg, 2007, pp. 832–846.

[38] X. Yu, Y. Jin, K. Tang, X. Yao, Robust optimization over time—a new
perspective on dynamic optimization problems, in: IEEE Congress on
Evolutionary Computation, CEC, Spain, 2010, pp. 3998–4003.

[39] R.W. Morrison, K.A. De Jong, A test problem generator for non-stationary
environments, in: IEEE Congress on Evolutionary Computation, CEC, vol. 3,
IEEE, 1999, pp. 2047–2053.

[40] R. Morrison, Performance measurement in dynamic environments, in:
J. Branke (Ed.), GECCO Workshop on Evolutionary Algorithms for Dynamic
Optimization Problems, 2003, pp. 5–8.

[41] J.J. Grefenstette, Evolvability in dynamic fitness landscapes: a genetic
algorithm approach, in: IEEE Congress on Evolutionary Computation, CEC,
vol. 3, IEEE, 1999, pp. 2031–2038.

[42] K. Weicker, N. Weicker, Dynamic rotation and partial visibility, in: IEEE
Congress on Evolutionary Computation, CEC, 2000, pp. 1125–1131.

http://etheses.bham.ac.uk/1296
http://etheses.bham.ac.uk/1296
http://www.staff.ljmu.ac.uk/enrtngu1/theses/phd_thesis_nguyen.pdf
http://www.staff.ljmu.ac.uk/enrtngu1/theses/phd_thesis_nguyen.pdf
dx.doi.org/10.1109/rivf.2012.6169823
dx.doi.org/10.1109/rivf.2012.6169823
http://www.staff.ljmu.ac.uk/enrtngu1/Papers/Nguyen_Yao_DCOP.pdf
dx.doi.org/10.1109/TEVC.2011.2180533
dx.doi.org/10.1109/TEVC.2011.2180533

T.T. Nguyen et al. / Swarm and Evolutionary Computation 6 (2012) 1–2422
[43] W. Tfaili, J. Dréo, P. Siarry, Fitting of an ant colony approach to dynamic
optimization through a new set of test functions, International Journal of
Computational Intelligence Research 3 (2007) 205–218.

[44] R. Tinos, S. Yang, Continuous dynamic problem generators for evolutionary
algorithms, in: IEEE Congress on Evolutionary Computation, CEC, 2007,
pp. 236–243.

[45] P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.-P. Chen, A. Auger, S. Tiwari,
Problem Definitions and Evaluation Criteria for the CEC 2005 Special
Session on Real-Parameter Optimization, Technical Report, Nanyang Tech-
nology University, Singapore, 2005.

[46] R. Salomon, Re-evaluating genetic algorithm performance under coordinate
rotation of benchmark functions: a survey of some theoretical and practical
aspects of genetic algorithms, BioSystems 39 (1996) 263–278.

[47] H. Richter, Detecting change in dynamic fitness landscapes, in: IEEE
Congress on Evolutionary Computation, CEC, 2009, pp. 1613–1620.

[48] S.A. Stanhope, J.M. Daida, Optimal mutation and crossover rates for a
genetic algorithm operating in a dynamic environment, in: Evolutionary
Programming VII, Lecture Notes in Computer Science, vol. 1447, Springer,
1998, pp. 693–702.

[49] S. Yang, Non-stationary problems optimization using the primal–dual
genetic algorithm, in: IEEE Congress on Evolutionary Computation, CEC,
vol. 3, 2003, pp. 2246–2253.

[50] S. Yang, X. Yao, Dual population-based incremental learning for problem
optimization in dynamic environments, in: The 7th Asia Pacific Symposium
on Intelligent and Evolutionary Systems, 2003, pp. 49–56.

[51] S. Yang, Memory-enhanced univariate marginal distribution algorithms for
dynamic optimization problems, in: IEEE Congress on Evolutionary Com-
putation, CEC, vol. 3, IEEE Press, 2005, pp. 2560–2567.

[52] S. Yang, X. Yao, Population-based incremental learning with associative
memory for dynamic environments, IEEE Transactions on Evolutionary
Computation 12 (5) (2008) 542–561.

[53] H.G. Cobb, An Investigation into the Use of Hypermutation as an Adaptive
Operator in Genetic Algorithms Having Continuous, Time-Dependent Non-
stationary Environments, Technical Report AIC-90-001, Naval Research
Laboratory, Washington, USA, 1990.

[54] J.J. Grefenstette, Genetic algorithms for changing environments, in:
R. Maenner, B. Manderick (Eds.), Parallel Problem Solving from Nature,
vol. 2, North Holland, 1992, pp. 137–144.

[55] A. Gaspar, P. Collard, From GAs to artificial immune systems: improving
adaptation in time dependent optimization, in: IEEE Congress on Evolu-
tionary Computation, CEC, vol. 3, IEEE, 1999, pp. 1859–1866.

[56] J. Branke, H. Schmeck, Designing evolutionary algorithms for dynamic
optimization problems, in: S. Tsutsui, A. Ghosh (Eds.), Theory and Applica-
tion of Evolutionary Computation: Recent Trends, Springer, 2003,
pp. 239–262.

[57] W. Feng, T. Brune, L. Chan, M. Chowdhury, C. Kuek, Y. Li, Benchmarks for
Testing Evolutionary Algorithms, Technical Report, Center for System and
Control, University of Glasgow, 1997.

[58] K. Weicker, Performance measures for dynamic environments, in: J. Merelo,
P. Adamidis, H.-G. Beyer, J. Fernández-Villacañas, H.-P. Schwefel
(Eds.), International Conference on Parallel Problem Solving from Nature,
PPSN, Lecture Notes in Computer Science, vol. 2439, Springer, 2002,
pp. 64–73.

[59] T.T. Nguyen, X. Yao, Solving dynamic constrained optimisation problems
using stochastic ranking and repair methods, IEEE Transactions on Evolu-
tionary Computation, URL: /http://www.staff.ljmu.ac.uk/enrtngu1/Papers/
Nguyen_Yao_dRepairGA.pdfS, submitted for publication.

[60] K. Weicker, N. Weicker, On evolution strategy optimization in dynamic
environments, in: IEEE Congress on Evolutionary Computation, CEC, vol. 3,
1999, pp. 2039–2046.

[61] R. Salomon, P. Eggenberger, Adaptation on the evolutionary time scale: a
working hypothesis and basic experiments, in: J.-K. Hao, E. Lutton,
E. Ronald, M. Schoenauer, D. Snyers (Eds.), 3rd European Conference on
Artificial Evolution, Lecture Notes in Computer Science, vol. 1363, Springer,
1997, pp. 251–262.

[62] N. Mori, S. Imanishi, H. Kita, Y. Nishikawa, Adaptation to changing
environments by means of the memory based thermodynamical genetic
algorithm, in: T. Bäck (Ed.), International Conference on Genetic Algorithms,
Morgan Kaufmann, 1997, pp. 299–306.

[63] F. Oppacher, M. Wineberg, The shifting balance genetic algorithm: improv-
ing the GA in a dynamic environment, in: W. Banzhalf (Ed.), Genetic and
Evolutionary Computation Conference, GECCO, vol. 1, Morgan Kaufmann,
1999, pp. 504–510.

[64] W. Rand, R. Riolo, Measurements for understanding the behavior of the
genetic algorithm in dynamic environments: a case study using the shaky
ladder hyperplane-defined functions, in: S. Yang, J. Branke (Eds.), GECCO
Workshop on Evolutionary Algorithms for Dynamic Optimization, 2005.

[65] S. Yang, Genetic algorithms with memory- and elitism-based immigrants in
dynamic environments, Evolutionary Computation 16 (3) (2008) 385–416.

[66] R. Morrison, K. De Jong, Measurement of population diversity, in: P. Collet,
C. Fonlupt, J.-K. Hao, E. Lutton, M. Schoenauer (Eds.), Artificial Evolution,
Lecture Notes in Computer Science, vol. 2310, Springer, Berlin, Heidelberg,
2002, pp. 1047–1074.

[67] C.-K. Goh, K.C. Tan, A competitive–cooperative coevolutionary paradigm for
dynamic multiobjective optimization, IEEE Transactions on Evolutionary
Computation 13 (1) (2009) 103–127.
[68] E. Alba, B. Sarasola, Measuring fitness degradation in dynamic optimization
problems, in: European Workshops on Applications of Evolutionary Com-
putation, EvoApplications, Part I, 2010, pp. 572–581.

[69] I. Hatzakis, D. Wallace, Dynamic multi-objective optimization with evolu-
tionary algorithms: a forward-looking approach, in: Genetic and Evolu-
tionary Computation Conference, GECCO, ACM Press, New York, NY, USA,
2006, pp. 1201–1208.

[70] X. Li, J. Branke, M. Kirley, On performance metrics and particle swarm
methods for dynamic multiobjective optimization problems, in: IEEE Con-
gress on Evolutionary Computation, CEC, 2007, pp. 576–583.

[71] C. Azevedo, A. Araujo, Generalized immigration schemes for dynamic
evolutionary multiobjective optimization, in: IEEE Congress on Evolution-
ary Computation, CEC, 2011, pp. 2033–2040.

[72] M. Camara, J. Ortega, F. Toro, Parallel processing for multi-objective
optimization in dynamic environments, in: IEEE International Parallel and
Distributed Processing Symposium, IPDPS, 2007, pp. 1–8.

[73] E. Alba, J. Saucedo Badia, G. Luque, A study of canonical GAs for NSOPs, in:
Doerner, et al., (Eds.), Metaheuristics, Operations Research/Computer
Science Interfaces Series, vol. 39, Springer, US, 2007, pp. 245–260.

[74] X. Hu, R. Eberhart, Adaptive particle swarm optimisation: detection and
response to dynamic systems, in: IEEE Congress on Evolutionary Computa-
tion, CEC, 2002, pp. 1666–1670.

[75] X. Li, J. Branke, T. Blackwell, Particle swarm with speciation and adaptation
in a dynamic environment, in: Genetic and Evolutionary Computation
Conference, GECCO, ACM Press, New York, NY, USA, 2006, pp. 51–58.

[76] G.R. Kramer, J.C. Gallagher, Improvements to the nCGA enabling online
intrinsic, in: The NASA DoD Conference on Evolvable Hardware, EH 03, IEEE
Computer Society, Washington, DC, USA, 2003, pp. 235–231.

[77] X. Zou, M. Wang, A. Zhou, B. McKay, Evolutionary optimization based on
chaotic sequence in dynamic environments, in: IEEE International Confer-
ence on Networking, Sensing and Control, vol. 2, 2004, pp. 1364–1369.

[78] A. Carlisle, G. Dozier, Adapting particle swarm optimisation to dynamic
environments, in: the International Conference on Artificial Intelligence,
2000, pp. 429–434.

[79] A. Carlisle, G. Dozier, Tracking changing extrema with adaptive particle
swarm optimizer, in: Proceedings of the World Automation Congress,
Orlando, FL, USA, 2002, pp. 265–270.

[80] H.K. Singh, A. Isaacs, T.T. Nguyen, T. Ray, X. Yao, Performance of infeasibility
driven evolutionary algorithm (IDEA) on constrained dynamic single
objective optimization problems, in: IEEE Congress on Evolutionary Com-
putation, CEC, IEEE Press, Trondheim, Norway, 2009, pp. 3127–3134.

[81] I. Moser, T. Hendtlass, A simple and efficient multi-component algorithm
for solving dynamic function optimisation problems, in: IEEE Congress on
Evolutionary Computation, CEC, 2007, pp. 252–259.

[82] T.T. Nguyen, Tracking Optima in Dynamic Environments using Evolutionary
RSMG Report 5, Technical Report, School of Computer Science, University of
Birmingham, online, 2008, URL: /http://www.cs.bham.ac.uk/�txn/unpub
lished/reports/Report_5_Thanh.pdfS.

[83] S. Janson, M. Middendorf, A hierarchical particle swarm optimizer for noisy
and dynamic environments, Genetic Programming and Evolvable Machines
7 (4) (2006) 329–354.

[84] F. Vavak, K. Jukes, T.C. Fogarty, Learning the local search range for genetic
optimisation in nonstationary environments, in: IEEE International Conference
on Evolutionary Computation ICEC’97, IEEE Publishing, 1997, pp. 355–360.

[85] F. Vavak, K.A. Jukes, T.C. Fogarty, Performance of a genetic algorithm with
variable local search range relative to frequency for the environmental
changes, in: Koza, et al. (Ed.), International Conference on Genetic Program-
ming, Morgan Kaufmann, 1998.

[86] F. Vavak, T.C. Fogarty, K. Jukes, A genetic algorithm with variable range of
local search for tracking changing environments, in: H.-M. Voigt (Ed.),
International Conference on Parallel Problem Solving from Nature, PPSN,
Lecture Notes in Computer Science, vol. 1141, Springer Verlag, Berlin, 1996.

[87] M. Riekert, K.M. Malan, A.P. Engelbrecht, Adaptive genetic programming for
dynamic classification problems, in: IEEE Congress on Evolutionary Com-
putation, CEC, IEEE Press, Piscataway, NJ, USA, 2009, pp. 674–681.

[88] M. Daneshyari, G. Yen, Dynamic optimization using cultural based PSO,
in: IEEE Congress on Evolutionary Computation, CEC, 2011, pp. 509–516.

[89] D. Parrott, X. Li, Locating and tracking multiple dynamic optima by a
particle swarm model using speciation, IEEE Transactions on Evolutionary
Computation 10 (4) (2006) 440–458.

[90] H. Richter, S. Yang, Learning behavior in abstract memory schemes for dynamic
optimization problems, Soft Computing 13 (12) (2009) 1163–1173.

[91] A. Sim ~oes, E. Costa, Memory-based CHC algorithms for the dynamic
traveling salesman problem, in: Genetic and Evolutionary Computation
Conference, GECCO, ACM, New York, NY, USA, 2011, pp. 1037–1044.

[92] H.C. Andersen, An Investigation into Genetic Algorithms, and the Relation-
ship Between Speciation and the Tracking of Optima in Dynamic Functions,
Honours Thesis, Queensland University of Technology, Brisbane, Australia,
November 1991.

[93] N. Mori, H. Kita, Y. Nishikawa, Adaptation to a changing environment by
means of the thermodynamical genetic algorithm, in: H.-M. Voigt (Ed.),
International Conference on Parallel Problem Solving from Nature, PPSN,
Lecture Notes in Computer Science, vol. 1141, Springer Verlag, Berlin, 1996,
pp. 513–522.

[94] S. Yang, X. Yao, Experimental study on population-based incremental
learning algorithms for dynamic optimization problems, Soft Computing

http://www.staff.ljmu.ac.uk/enrtngu1/Papers/Nguyen_Yao_dRepairGA.pdf
http://www.staff.ljmu.ac.uk/enrtngu1/Papers/Nguyen_Yao_dRepairGA.pdf
http://www.cs.bham.ac.uk/~txn/unpublished/reports/Report_5_Thanh.pdf
http://www.cs.bham.ac.uk/~txn/unpublished/reports/Report_5_Thanh.pdf
http://www.cs.bham.ac.uk/~txn/unpublished/reports/Report_5_Thanh.pdf

T.T. Nguyen et al. / Swarm and Evolutionary Computation 6 (2012) 1–24 23
A—Fusion of Foundations, Methodologies and Applications 9 (11) (2005)
815–834.

[95] S. Janson, M. Middendorf, A hierarchical particle swarm optimizer and its
adaptive variant, IEEE Transactions on Systems, Man, and Cybernetics—Part
B: Cybernetics 35 (2005) 1272–1282.

[96] T.M. Blackwell, P.J. Bentley, Dynamic search with charged swarms,
in: W.B. Langdon, et al. (Ed.), Genetic and Evolutionary Computation
Conference, GECCO, Morgan Kaufmann, 2002, pp. 19–26.

[97] T. Blackwell, J. Branke, Multiswarms, exclusion, and anti-convergence
in dynamic environments, IEEE Transactions on Evolutionary Computation
10 (4) (2006) 459–472.

[98] T. Blackwell, Particle swarm optimization in dynamic environment, in:
S. Yang, Y.-S. Ong, Y. Jin (Eds.), Evolutionary Computation in Dynamic and
Uncertain Environments, Studies in Computational Intelligence, Springer-
Verlag, NJ, USA, 2007, pp. 28–49.

[99] L. Bui, H. Abbass, J. Branke, Multiobjective optimization for dynamic
environments, in: IEEE Congress on Evolutionary Computation, CEC, vol.
3, IEEE Press, 2005, pp. 2349–2356.

[100] H.A. Abbass, K. Deb, Searching under multi-evolutionary pressures, in: The
Second International Conference on Evolutionary Multi-Criterion Optimiza-
tion, EMO, 2003, pp. 391–404.

[101] A. Toffolo, E. Benini, Genetic diversity as an objective in multi-objective
evolutionary algorithms, Evolutionary Computation 11 (2) (2003) 151–167.

[102] Y. Wang, M. Wineberg, Estimation of evolvability genetic algorithm and
dynamic environments, Genetic Programming and Evolvable Machines 7 (4)
(2006) 355–382.

[103] L. Liu, D. Wang, S. Yang, Compound particle swarm optimization in dynamic
environments, in: The 2008 Conference on Applications of Evolutionary
Computing, Evo’08, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 616–625.

[104] H. Cheng, S. Yang, Multi-population genetic algorithms with immigrants
scheme for dynamic shortest path routing problems in mobile ad hoc
networks, in: Di Chio, et al., (Eds.), Applications of Evolutionary Computa-
tion, Lecture Notes in Computer Science, vol. 6024, Springer, Berlin,
Heidelberg, 2010, pp. 562–571.

[105] F.O. de Franc-a, F.J. Von Zuben, A dynamic artificial immune algorithm applied to
challenging benchmarking problems, in: IEEE Congress on Evolutionary Compu-
tation, CEC, IEEE Press, Piscataway, NJ, USA, 2009, pp. 423–430.

[106] K. Deb, U.B. Rao, S. Karthik, Dynamic multi-objective optimization and
decision-making using modified NSGA-II: a case study on hydro-thermal
power scheduling, in: 4th International Conference on Evolutionary Multi-
Criterion Optimization, EMO, Lecture Notes in Computer Science, vol. 4403,
Springer, 2007, pp. 803–817.

[107] M. Gouvêa, Jr., A. Araújo, Adaptive evolutionary algorithm based on
population dynamics for dynamic environments, in: Genetic and Evolu-
tionary Computation Conference, GECCO, ACM, New York, NY, USA, 2011,
pp. 909–916.

[108] W. Cedeno, V.R. Vemuri, On the use of niching for dynamic landscapes, in:
International Conference on Evolutionary Computation, IEEE, 1997.

[109] J. Lewis, E. Hart, G. Ritchie, A comparison of dominance mechanisms and
simple mutation on non-stationary problems, in: A.E. Eiben, T. Bäck,
M. Schoenauer, H.-P. Schwefel (Eds.), International Conference on Parallel
Problem Solving from Nature, PPSN, Lecture Notes in Computer Science, vol.
1498, Springer, 1998, pp. 139–148.

[110] K.P. Ng, K.C. Wong, A new diploid scheme and dominance change mechan-
ism for non-stationary function optimization, in: Sixth International Con-
ference on Genetic Algorithms, Morgan Kaufmann, 1995, pp. 159–166.

[111] A.S. Uyar, A.E. Harmanci, A new population based adaptive domination
change mechanism for diploid genetic algorithms in dynamic environ-
ments, Soft Computing—A Fusion of Foundations, Methodologies and
Applications 9 (11) (2005) 803–814.

[112] S. Yang, On the design of diploid genetic algorithms for problem optimiza-
tion in dynamic environments, in: IEEE Congress on Evolutionary Computa-
tion, CEC, 2006, pp. 1362–1369.

[113] C. Ryan, The degree of oneness, in: First Online Workshop on Soft Comput-
ing, 1996, pp. 43–49.

[114] E. Collingwood, D. Corne, P. Ross, Useful diversity via multiploidy, in:
Proceedings of IEEE International Conference on Evolutionary Computation,
1996, pp. 810–813.

[115] C.N. Bendtsen, T. Krink, Dynamic memory model for non-stationary opti-
mization, in: IEEE Congress on Evolutionary Computation, CEC, IEEE, 2002,
pp. 145–150.

[116] S.J. Louis, Z. Xu, Genetic algorithms for open shop scheduling and re-
scheduling, in: M.E. Cohen, D.L. Hudson (Eds.), ISCA Eleventh International
Conference on Computers and their Applications, 1996, pp. 99–102.

[117] N. Mori, H. Kita, Y. Nishikawa, Adaptation to a changing environment by
means of the feedback thermodynamical genetic algorithm, in: A.E. Eiben,
T. Bäck, M. Schoenauer, H.-P. Schwefel (Eds.), International Conference on
Parallel Problem Solving from Nature, PPSN, Lecture Notes in Computer
Science, vol. 1498, Springer, 1998, pp. 149–158.

[118] S. Yang, Memory-based immigrants for genetic algorithms in dynamic
environments, in: H.-G. Beyer, et al., (Eds.), Genetic and Evolutionary
Computation Conference, ACM, 2005, pp. 1115–1122.

[119] S. Yang, Associative memory scheme for genetic algorithms in dynamic
environments, in: F. Rothlauf, et al., (Eds.), Applications of Evolutionary
Computing, Lecture Notes in Computer Science, vol. 3907, Springer, 2006,
pp. 788–799.
[120] E.L. Yu, P.N. Suganthan, Evolutionary programming with ensemble of explicit
memories for dynamic optimization, in: IEEE Congress on Evolutionary Compu-
tation, CEC, IEEE Press, Piscataway, NJ, USA, 2009, pp. 431–438.

[121] S. Zeng, H. Shi, L. Kang, L. Ding, Orthogonal dynamic hill climbing algorithm:
ODHC, in: S. Yang, Y.-S. Ong, Y. Jin (Eds.), Evolutionary Computation in
Dynamic and Uncertain Environments, Studies in Computational Intelli-
gence, Springer-Verlag, New York, Inc., 2007, pp. 79–105.

[122] J. Lepagnot, A. Nakib, H. Oulhadj, P. Siarry, Brain cine MRI segmentation
based on a multiagent algorithm for dynamic continuous optimization, in:
IEEE Congress on Evolutionary Computation, CEC, 2011, pp. 1695–1702.

[123] M. Mavrovouniotis, S. Yang, Memory-based immigrants for ant colony
optimization in changing environments, in: The 2011 international con-
ference on Applications of Evolutionary Computation—Volume Part I,
EvoApplications’11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 324–333.

[124] J. Eggermont, T. Lenaerts, S. Poyhonen, A. Termier, Raising the dead:
extending evolutionary algorithms with a case-based memory, in:
J.F. Miller, et al., (Eds.), Genetic Programming, Proceedings of EuroGP, vol.
2038, Springer, 2001, pp. 280–290.

[125] C.L. Ramsey, J.J. Grefenstette, Case-based initialization of genetic algorithms,
in: S. Forrest (Ed.), International Conference on Genetic Algorithms, Morgan
Kaufmann, 1993, pp. 84–91.

[126] A. Sim~oes, E. Costa, Evolutionary algorithms for dynamic environments: predic-
tion using linear regression and Markov chains, in: International Conference on
Parallel Problem Solving from Nature, PPSN, Lecture Notes in Computer Science,
vol. 5199, Springer, Berlin, Heidelberg, 2008, pp. 306–315.

[127] H. Richter, S. Yang, Memory based on abstraction for dynamic fitness
functions, in: M. Giacobini, et al., (Eds.), Applications of Evolutionary
Computing, Lecture Notes in Computer Science, vol. 4974, Springer, Berlin,
Heidelberg, 2008, pp. 596–605.

[128] A. Sim ~oes, E. Costa, An immune system-based genetic algorithm to deal
with dynamic environments: diversity and memory, in: D.W. Pearson,
N.C. Steele, R. Albrecht (Eds.), International Conference on Neural Networks
and Genetic Algorithms (ICANNGA03), Springer, 2003, pp. 168–174.

[129] S. Yang, A comparative study of immune system based genetic algorithms in
dynamic environments, in: Genetic and Evolutionary Computation Con-
ference, GECCO, ACM Press, New York, NY, USA, 2006, pp. 1377–1384.

[130] A. Sim ~oes, E. Costa, Improving memory’s usage in evolutionary algorithms
for changing environments, in: IEEE Congress on Evolutionary Computation,
CEC, 2007, pp. 276–283.

[131] T. Zhu, W. Luo, Z. Li, An adaptive strategy for updating the memory in
evolutionary algorithms for dynamic optimization, in: IEEE Symposium on
Computational Intelligence in Dynamic and Uncertain Environments
(CIDUE), 2011, pp. 8–15.

[132] J. Branke, Evolutionary approaches to dynamic optimization problems—

introduction and recent trends, in: J. Branke (Ed.), GECCO Workshop on
Evolutionary Algorithms for Dynamic Optimization Problems, 2003, pp. 2–4.

[133] C. Rossi, M. Abderrahim, J.C. Dı́az, Tracking moving optima using Kalman-
based predictions, Evolutionary Computation 16 (1) (2008) 1–30.

[134] A. Sim~oes, E. Costa, Improving prediction in evolutionary algorithms for dynamic
environments, in: Raidl, et al., (Eds.), Genetic and Evolutionary Computation
Conference, GECCO, ACM, Montreal, Québec, Canada, 2009, pp. 875–882.

[135] P.A.N. Bosman, H.L. Poutré, Learning and anticipation in online dynamic
optimization with evolutionary algorithms: the stochastic case, in: Genetic
and Evolutionary Computation Conference, GECCO, ACM, New York, NY,
USA, 2007, pp. 1165–1172.

[136] J. Branke, D. Mattfeld, Anticipation and flexibility in dynamic scheduling,
International Journal of Production Research 43 (15) (2005) 3103–3129.

[137] R.K. Ursem, Multinational GA optimization techniques in dynamic environ-
ments, in: D. Whitley, D. Goldberg, E. Cantu-Paz, L. Spector, I. Parmee,
H.-G. Beyer (Eds.), Genetic and Evolutionary Computation Conference,
GECCO, Morgan Kaufmann, 2000, pp. 19–26.

[138] P.J. Angeline, Tracking extrema in dynamic environments, in: P.J. Angeline,
R.G. Reynolds, J.R. McDonnell, R. Eberhart (Eds.), Sixth International Con-
ference on Evolutionary Programming, Lecture Notes in Computer Science,
vol. 1213, Springer, 1997, pp. 335–345.

[139] D.V. Arnold, H.-G. Beyer, Random dynamics optimum tracking with evolu-
tion strategies, in: J. Merelo, P. Adamidis, H.-G. Beyer, J. Fernández-Villaca-
ñas, H.-P. Schwefel (Eds.), International Conference on Parallel Problem
Solving from Nature, PPSN, Springer, Heidelberg, 2002, pp. 3–12.

[140] D.V. Arnold, H.-G. Beyer, Optimum tracking with evolution strategies,
Evolutionary Computation 14 (3) (2006) 291–308.

[141] J. Branke, T. Kaußler, C. Schmidt, H. Schmeck, A multi-population approach
to dynamic optimization problems, in: Adaptive Computing in Design and
Manufacturing, Springer, 2000.

[142] R.I. Lung, D. Dumitrescu, A new collaborative evolutionary-swarm optimi-
zation technique, in: Genetic and Evolutionary Computation Conference,
GECCO, ACM, New York, NY, USA, 2007, pp. 2817–2820.

[143] R. Mendes, A. Mohais, DynDE: a differential evolution for dynamic optimi-
zation problems, in: IEEE Congress on Evolutionary Computation, CEC, IEEE,
2005, pp. 2808–2815.

[144] J.L. Fernández, J.L. Arcos, Adapting particle swarm optimization in dynamic
and noisy environments, in: IEEE Congress on Evolutionary Computation,
CEC, 2010, pp. 765–772.

[145] C. Li, S. Yang, A clustering particle swarm optimizer for dynamic optimiza-
tion, in: IEEE Congress on Evolutionary Computation, CEC, IEEE Press,
Piscataway, NJ, USA, 2009, pp. 439–446.

T.T. Nguyen et al. / Swarm and Evolutionary Computation 6 (2012) 1–2424
[146] S. Yang, C. Li, A clustering particle swarm optimizer for locating and
tracking multiple optima in dynamic environments, IEEE Transactions on
Evolutionary Computation 14 (6) (2010) 959–974.

[147] S. Tsutsui, Y. Fujimoto, A. Ghosh, Forking genetic algorithms: gas with search
space division schemes, Evolutionary Computation 5 (1) (1997) 61–80.

[148] I. Moser, Review—All Currently Known Publications on Approaches which
Solve the Moving Peaks Problem, Technical Report, Swinburne University of
Technology, Melbourne, Australia, 2007.

[149] T. Jansen, C. Zarges, Analysis of evolutionary algorithms: from computa-
tional complexity analysis to algorithm engineering, in: The 11th Workshop
on Foundations of Genetic Algorithms, 2005, pp. 1–14.

[150] A. Nix, M. Vose, Modelling genetic algorithms with Markov chains, Annals of
Mathematics and Artificial Intelligence 5 (1) (1998) 79–88.

[151] H. Mühlenbein, The equation for response to selection and its use for
prediction, Evolutionary Computation 5 (3) (1998) 303–346.

[152] J. He, X. Yao, Drift analysis and average time complexity of evolutionary
algorithms, Artificial Intelligence 127 (1) (2001) 57–85.

[153] J. He, X. Yao, From an individual to a population: an analysis of the first
hitting time of population-based evolutionary algorithms, IEEE Transactions
on Evolutionary Computation 6 (5) (2002) 495–511.

[154] S.A. Stanhope, J.M. Daida, Genetic algorithm fitness dynamics in a changing
environment, in: IEEE Congress on Evolutionary Computation, CEC, vol. 3,
IEEE, 1999, pp. 1851–1858.

[155] J. Branke, W. Wang, Theoretical analysis of simple evolution strategies in
quickly changing environments, in: Genetic and Evolutionary Computation
Conference, GECCO, 2003, pp. 537–548.

[156] S. Droste, Analysis of the (1þ1) EA for a dynamically changing onemax-
variant, in: IEEE Congress on Evolutionary Computation, CEC, IEEE Press,
2002, pp. 55–60.

[157] T. Jansen, U. Schellbach, Theoretical analysis of a mutation-based evolu-
tionary algorithm for a tracking problem in lattice, in: H.-G. Beyer, et al.,
(Eds.), Genetic and Evolutionary Computation Conference, GECCO, ACM,
2005, pp. 841–848.

[158] K. Weicker, Analysis of local operators applied to discrete tracking pro-
blems, Soft Computing—A Fusion of Foundations, Methodologies and
Applications 9 (11) (2005) 778–792.

[159] P. Rohlfshagen, P.K. Lehre, X. Yao, Dynamic evolutionary optimisation: an
analysis of frequency and magnitude of change, in: Genetic and Evolu-
tionary Computation Conference, GECCO, 2009, pp. 1713–1720.
[160] J. Branke, E. Salihoglu, S. Uyar, Towards an analysis of dynamic environ-
ments, in: H.-G. Beyer, et al., (Eds.), Genetic and Evolutionary Computation
Conference, ACM, 2005, pp. 1433–1439.

[161] J. Branke, M. Orbayi, S. Uyar, The role of representations in dynamic
knapsack problems, in: F. Rothlauf, et al., (Eds.), Applications of Evolu-
tionary Computing, Lecture Notes in Computer Science, vol. 3907, Springer,
2006, pp. 764–775.

[162] R. Tinos, S. Yang, An analysis of the XOR dynamic problem generator based
on the dynamical system, in: International Conference on Parallel Problem
Solving from Nature, PPSN, 2010.

[163] M.D. Vose, The Simple Genetic Algorithm: Foundations and Theory, The MIT
Press, 1999.

[164] H. Richter, Behavior of evolutionary algorithms in chaotically changing
fitness landscapes, in: X. Yao, et al., (Eds.), International Conference on
Parallel Problem Solving from Nature, PPSN, Lecture Notes in Computer
Science, vol. 3242, Springer, 2004, pp. 111–120.

[165] H. Richter, Evolutionary optimization in spatio temporal fitness landscapes,
in: International Conference on Parallel Problem Solving from Nature, PPSN,
Springer, 2006, pp. 1–10.

[166] J. Chazottes, B. Fernandez, Dynamics of Coupled Map Lattices and of Related
Spatially Extended Systems, Springer, Heidelberg, 2005.

[167] D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization, IEEE
Transactions on Evolutionary Computation 1 (1) (1997) 67–82.

[168] R.K. Ursem, T. Krink, M.T. Jensen, Z. Michalewicz, Analysis and modeling of
control tasks in dynamic systems, IEEE Transactions on Evolutionary
Computation 6 (4) (2002) 378–389.

[169] J. He, X. Yao, A study of drift analysis for estimating computation time of
evolutionary algorithms, Natural Computing 3 (1) (2004) 21–35.

[170] H. Cheng, S. Yang, Genetic algorithms with immigrants schemes for
dynamic multicast problems in mobile ad hoc networks, Engineering
Applications of Artificial Intelligence 23 (5) (2010) 806–819.

[171] D.M. Chitty, M.L. Hernandez, A hybrid ant colony optimization technique for
dynamic vehicle routing, in: Genetic and Evolutionary Computation Con-
ference, GECCO, 2004, pp. 48–59.

[172] L. Xing, P. Rohlfshagen, Y. Chen, X. Yao, A hybrid ant colony optimisation
algorithm for the extended capacitated arc routing problem, IEEE Transac-
tions on Systems, Man and Cybernetics, Part B. Cybernetics 41 (4) (2011)
1110–1123.

	Evolutionary dynamic optimization: A survey of the state of the art
	Introduction
	Benchmark problems
	Properties of a good benchmark problem
	Reviewing existing general-purpose benchmark generators/problems

	Performance measures
	Optimality-based performance measures
	Behavior-based performance measures
	Performance measures for dynamic multi-objective optimization
	Discussion

	Optimization approaches
	The goals of dynamic evolutionary algorithms
	Detecting a change
	Detecting change by re-evaluating solutions
	Detecting changes based on algorithm behavior

	Introducing diversity when changes occur
	Overview
	Strengths and weaknesses

	Maintaining diversity during the search
	Overview
	Strengths and weaknesses

	Memory approaches
	Implicit memory
	Explicit memory
	Strengths and weaknesses

	Prediction approaches
	Overview
	Strengths and weaknesses

	Self-adaptive methods
	Multi-population approaches
	Overview
	Strengths and weaknesses

	Summary on the strengths and weaknesses of current EAs for DOPs

	Theoretical development of EDO
	Summary and future research directions
	Summary
	The gaps between academic research and real-world problems
	Future research directions

	Acknowledgement
	References

