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Many real-world optimization problems are combinatorial optimization problems subject to dynamic
environments. In such dynamic combinatorial optimization problems (DCOPs), the objective, decision
variables and/or constraints may change over time, and so solving DCOPs is a challenging task. Meta-
heuristics are a good choice of tools to tackle DCOPs because many metaheuristics are inspired by natural
or biological evolution processes, which are always subject to changing environments. In recent years,
DCOPs have attracted a growing interest from the metaheuristics community. This paper is a tutorial
on metaheuristics for DCOPs. We cover the definition of DCOPs, typical benchmark problems and their
characteristics, methodologies and performance measures, real-world case study and key challenges in
the area. Some future research directions are also pointed out in this paper.
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1. Introduction

In our daily life, we face various optimization problems, of which many are combinatorial optimization
problems (COPs). A COP has a discrete search space (i.e. a binary or combinatorial space instead of
a real space), which consists of a finite set of solutions. To solve a COP, an optimization algorithm
attempts to find the optimal solution from a large finite set of solutions in the search space. The search
space of candidate solutions usually grows exponentially as the size of the problem increases, which
makes the search for the optimal solution by a traditional deterministic method (e.g. an exhaustive
search or branch-and-bound method) infeasible. For example, the travelling salesman problem (TSP) is
a typical example of COP, where the search space of candidate solutions grows even more than expo-
nentially as the number of cities increases. Hence, researchers turn to stochastic optimization methods
or heuristics and metaheuristics to solve COPs.
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In computer science, a heuristic is a technique designed to solve a given problem, which ignores
whether the final solution can be proved to be optimal or not, and usually produces a sufficiently
good quality solution. Heuristics are intended to gain computational performance or conceptual sim-
plicity, potentially at the cost of accuracy or precision. A metaheuristic method is a heuristic for solv-
ing a general class of computational problems by combining black-box procedures—usually heuristics
themselves—in a hopefully efficient way. Over the past several decades, researchers have developed
many metaheuristics, which include genetic algorithm (GA) proposed by Holland (1975), simulated
annealing (SA) by Kirkpatrick et al. (1983), tabu search (TS) by Glover (1986), ant colony optimiza-
tion (ACO) by Dorigo (1992), artificial immune system (AIS) by Farmer et al. (1986) and many more.
Metaheuristics have frequently been used for solving many COPs with promising results.

However, in the real world, many optimization problems, including COPs, are subject to dynamic
environments, where the optimization objective, decision variables and/or constraints may change over
time. Hence, addressing dynamic optimization problems (DOPs) is an important task. DOPs pose seri-
ous challenges to deterministic optimization methods as well as metaheuristics due to the characteristics
of changing conditions. However, metaheuristics, when properly modified, are a good choice of tools
to tackle DOPs because most metaheuristics are inspired by natural or biological evolution processes
which are subject to changing environments. Over the past two decades, researchers have developed
different methods to modify metaheuristics to solve DOPs, including dynamic COPs (DCOPs). A com-
prehensive survey on metaheuristics, especially evolutionary algorithms (EAs), for general DOPs can
be found in Jin & Branke (2005), Cruz et al. (2011) and Nguyen et al. (2012). There are also several
monographs (see Branke, 2001; Morrison, 2004; Weicker, 2003), edited books (see Yang et al., 2007)
and PhD theses (see Li, 2011; Liekens, 2005; Nguyen, 2011) that deal with this area of research.

In recent years, DCOPs have attracted a growing interest from the metaheuristics community with
some promising results. In this paper, we provide a tutorial on metaheuristics for DCOPs. We first intro-
duce the definition of DCOPs, describe typical benchmark problems and summarize the basic features of
DCOPs in the literature. Then, we briefly review the methodologies developed to modify metaheuris-
tics to deal with DCOPs and relevant performance measures to evaluate metaheuristics for DCOPs.
Thereafter, we present a case study on metaheuristics for real-world DCOPs. Finally, we discuss some
key issues and challenges in the domain. Some future research directions regarding metaheuristics for
DCOPs are also discussed in this paper.

The rest of this paper is organized as follows. Section 2 presents the definition, brief review, typical
benchmark problems, and characteristics of DCOPs studied in the literature. Section 3 overviews the
development of metaheuristics for DCOPs, including the performance measures and methodologies
developed for modifying metaheuristics for solving DCOPs. Section 4 presents a real-world case study.
Section 5 gives discussions on some key challenges on metaheuristics for DCOPs. Finally, Section 6
concludes this paper with suggestions on the future research directions in the area.

2. Dynamic combinatorial optimization problems

2.1 Problem definition

Even defining DCOPs is a challenging task. In general terms, researchers usually define ‘optimiza-
tion problems that change over time’ as dynamic problems, time-dependent problems or DOPs, which
are not distinguished or are used interchangeably. In many existing metaheuristics studies, the consid-
ered problem is either defined as a sequence of static problems linked up by some dynamic rules (e.g.
Weicker, 2000, 2003; Aragon & Esquivel, 2004; Rohlfshagen & Yao, 2010), or as a problem that have
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time-dependent parameters in its mathematical model (e.g. Bäck, 1998; Bosman, 2007; Woldesenbet
& Yen, 2009) without explicitly mentioning whether the problem is solved online or not, although the
authors do imply that the problem is solved online by the algorithm as time goes by. However, it would
be better to distinguish a DOP from a general time-dependent problem because, no matter how the prob-
lem changes, from the perspective of an optimization algorithm, a time-dependent problem is different
from a static problem only if it is solved in a dynamic way, i.e. the algorithm needs to take into account
changes during the optimization process as time goes by. In this paper, we define DOPs as a special
class of dynamic problems that are solved online by an optimization algorithm as time goes by. A more
formal and detailed definition of DOPs, which considers the common characteristics of DOPs, can be
found in Nguyen & Yao (2009) and Nguyen (2011, Chapter 4).

For DCOPs, Rohlfshagen & Yao (2008, 2011) provided a definition that extends the definition of
stationary COPs by Garey & Johnson (1979). According to Garey & Johnson (1979), a COP Π has the
following three parts: a set S of instances, a finite set X (I) of candidate solutions for each instance I ∈ S
and a function f : S × X→R that assigns a positive rational number f (I, �x) to each instance I ∈ S and
each candidate solution �x ∈ X (I). From this COP definition, a DCOP ΠD = (Π , T ) can be defined as

optimize�x(t)f (I(k), �x(t)) subject to �x(t) ∈ X (I(k)) and I(k + 1)= T (I(k), t), (2.1)

where t is the time, k is the index of an environment such that k × τ � t < (k + 1)× τ and τ is the
period of an environment, �x(t) is a candidate solution at time t for instance I(k) ∈ S, and the mapping
T : S × N→ S defines the trajectory through the space of all instances over time (i.e. the state space),
and sometimes is called the meta-dynamics. The actual time t is usually assumed to be discrete and is
measured in the unit of a single function evaluation.

The above definition of DCOP highlights the role of the actual dynamics and the parameters so that
a DCOP ΠD is specified not only by S, but also by the set of instances determined by T . Given the
above definition, a DCOP can be seen as a discrete dynamical system and the task of an algorithm is to
track the trajectory of successive global optima in the search space.

2.2 DCOPs in the literature: brief review

In order to compare the performance of metaheuristics for DCOPs, researchers have developed a number
of benchmarks or modelled real-world DCOPs. Generally speaking, a DCOP is constructed via changing
(the parameters of) a stationary base COP regarding the characteristics of the environmental dynamics,
such as the frequency, severity, predictability and cyclicity of the environmental changes. Below, we
briefly review the DCOPs that have been used/developed by researchers to test metaheuristics in the
literature.

In the early days, the dynamic test environments were quite simple: just switching between two or
more stationary problems or between two or more states of one problem. For example, the dynamic
knapsack problem (DKP) where the knapsack capacity oscillates between two or more fixed values has
been frequently used in the literature (see Lewis et al., 1998; Mori et al., 1997; Ng & Wong, 1995).
The DKP has later been extended to dynamic multi-dimensional knapsack problems (DMKP) in several
studies (see Branke et al., 2006; Uyar & Uyar, 2009). The dynamic bit-matching problem (DBMP) is
another simple DCOP that has been used by researchers for analysing the performance of metaheuristics
(see Stanhope & Daida, 1998).

Later, Yang (2004) proposed a DCOP generator based on the concept of problem difficulty and uni-
tation and trap functions. An XOR DOP generator, which can generate dynamic environments from any
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binary encoded stationary problem based on a bit-wise exclusive-or (XOR) operator, has been proposed
by Yang (2003) and Yang & Yao (2005, 2008). Inspired by and based on the XOR DOP generator,
Rohlfshagen & Yao (2010) further developed the dynamic modular function that contains decompos-
able modules with tunable degrees of inter-modular dependencies and hence can be used to test the role
of modularity on EAs for DCOPs. Richter (2004, 2010) constructed spatio-temporal fitness landscapes
based on the concept of coupled map lattices (CML) (Chazottes & Fernandez, 2005), where properties
such as modality, ruggedness, epistasis, dynamic severity and Lyapunov exponents can be defined and
analysed. Bosman (2007) and Nguyen & Yao (2009) investigated the online DCOPs and DOPs that
have the time-linkage property, i.e. a solution found at a given time by an optimization algorithm affects
the future behaviour of the problem. In order to develop a unified approach of constructing DOPs across
the discrete and real spaces, a generalized dynamic benchmark generator was recently proposed by Li
& Yang (2008) and Li et al. (2008), which can be instantiated to construct dynamic test environments
for any type of solution space.

In recent years, researchers have also studied a number of real-world DCOPs. For example, Li et al.
(2006) studied the dynamic TSP (DTSP) where the cities may change their locations. Handa et al. (2007)
applied a memetic algorithm to solve the dynamic salting truck routing problem based on the real-world
data from the South Gloucestershire Council in England and achieved a 10% improvement over the
available solutions in terms of the distances travelled by the trucks. Cremers et al. (2010) studied a
dynamic planning problem for the transport of elderly and disabled people using a GA. Mavrovouniotis
& Yang (2010, 2011b,c,d) investigated the DTSP where cities may join or leave the topology over time
or the traffic may change over time. The dynamic vehicle routing problems in logistics and transport
networks have also been investigated by the metaheuristics community (see Chitty & Hernandez, 2004;
Mei et al., 2010; Weise et al., 2009). Cheng & Yang (2010b) and Yang et al. (2010) studied the dynamic
shortest path routing problem (DSPRP) in mobile ad hoc networks (MANETs). Cheng & Yang have
also studied the dynamic multicast routing problem in MANETs (see Cheng & Yang, 2010a) and the
dynamic load balanced clustering problem in MANETs (see Cheng & Yang, 2011).

2.3 Typical benchmark problems

2.3.1 The dynamic bit-matching problem. The DBMP has been used by researchers for the analysis
of the performance of EAs in dynamic environments (see Droste, 2002; Stanhope & Daida, 1998). In the
DBMP, an algorithm needs to find solutions that minimize the Hamming distance to an arbitrary target
pattern that may change over time. Given a solution �x ∈ {0, 1}L (L is the length of the binary encoding
of a solution for the problem) and the target pattern �a ∈ {0, 1}L at time t, the Hamming distance between
them is calculated as follows:

dHamming(�x(t), �a(t))=
i=L∑
i=1

|xi(t)− ai(t)|. (2.2)

The dynamics (i.e. dynamic characteristics) of the DBMP is determined by two parameters, g and d,
which control the number of generations between changes and the degree (Hamming distance) by which
the target pattern �a is altered (for each change, d distinct and randomly chosen bits in �a are inverted),
respectively. For example, setting (g, d)= (0, 0) results in a stationary function whereas setting (g, d)=
(20, 5) means that every 20 generations, the target pattern �a changes by 5 bits randomly.

2.3.2 Dynamic knapsack problems. The knapsack problem is a classical NP-hard COP, where the
solution space belongs to the binary space. Given a set of items, each of which has a weight and a
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profit, and a knapsack with a fixed capacity, the problem aims to select items to fill up the knapsack to
maximize the total profit while satisfying the capacity constraint of the knapsack. The knapsack problem
has frequently been used to test the performance of metaheuristics in stationary environments (Wilbaut
et al., 2008), and its dynamic version has also been used by researchers to test the performance of
metaheuristics in dynamic environments (see Lewis et al., 1998; Mori et al., 1997; Ng & Wong, 1995).
In the DKP, the system dynamics can be constructed by changing the weights of items, the profits of
items, and/or the knapsack capacity over time according to some rules, respectively. So, the DKP can
be described as follows:

max f (�x(t), t)=
n∑

i=1

pi(t) · xi(t), (2.3)

s.t.
n∑

i=1

wi(t) · xi(t) � C(t), (2.4)

where n is number of items, �x(t) ∈ {0, 1}n is a solution at time t, xi(t) ∈ {0, 1} indicates whether item i is
included in the subset or not, pi(t) is the profit of item i at time t, and wi(t) is the weight of item i at time
t and C(t) is the capacity of knapsack at time t. The weight and profit of each item may be bounded
in the range of [lw, uw] and [lp, up], respectively, and the capacity of knapsack may be bounded in the
range of [lc, uc].

Similarly, the static multi-dimensional knapsack problem (MKP) belongs to the class of NP-
complete problems, which has a wide range of real-world applications, such as cargo loading, selecting
projects to fund, budget management, etc. In the MKP, we have a number of resources (knapsacks),
each of which has a capacity, and a set of items, each of which has a profit and consumes some amount
of each resource. The aim is to select items to maximize the total profit while satisfying the capacity
constraints for all resources. The DMKP has recently been used to investigate the performance of EAs
for DCOPs (see Branke et al., 2006; Uyar & Uyar, 2009). As in DKP, the profit and resource consump-
tion for each item as well as the capacity of each resource may change over time in DMKP. Let �r, �p
and �c denote the resource consumptions of items, the profits of items, and the capacities of resources,
respectively, then the DMKP can be defined as follows:

max f (�x(t), t)=
n∑

i=1

pi(t) · xi(t), (2.5)

s.t.
n∑

i=1

rij(t) · xi(t) � ci(t), j= 1, 2, . . . , m, (2.6)

where n, xi(t), and pi(t) are as defined above, m is the number of resources, rij(t) denotes the resource
consumption of item i for resource j at time t and ci(t) is the capacity constraint of resource i at time t.
The system dynamics can be constructed by changing the profits of items, resource consumptions of
items and the capacity constraints of resources within certain upper and lower bounds over time accord-
ing to some rules, respectively.

2.3.3 The XOR DOP generator. In Yang (2003) and Yang & Yao (2005), an XOR DOP generator
that can generate dynamic environments from any binary encoded stationary problem using a bit-wise
exclusive-or (XOR) operator has been proposed. Given a stationary problem f (�x) (�x ∈ {0, 1}L, where
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L is the length of binary encoding, DOPs can be constructed from it as follows. Suppose the environ-
ment is changed every τ generations. For each environmental period k, an XORing mask �M (k) is first
incrementally generated as follows:

�M (k)= �M (k − 1)⊕ �T(k), (2.7)

where ‘⊕’ is the XOR operator (i.e. 1⊕ 1= 0, 1⊕ 0= 1, 0⊕ 0= 0) and �T(k) is an intermediate binary
template randomly created with ρ × L (ρ ∈ [0.0, 1.0]) ones inside it for environmental period k. Initially,
�M (0) is set to a zero vector. Then, the individuals at generation t are evaluated as follows:

f (�x(t), t)= f (�x(t)⊕ �M (k)), (2.8)

where k = �t/τ	 is the environmental period index.
With this XOR DOP generator, the environmental dynamics can be tuned by two parameters: τ

controls the speed of environmental changes, while ρ controls the severity of changes. The bigger
the value of τ , the slower the environment changes. The bigger the value of ρ, the more severe the
environment changes.

The aforementioned XOR DOP generator in fact can construct random dynamic environments
because there is no guarantee that the environment will return to a previous one after certain changes.
The XOR DOP generator has been extended to construct cyclic dynamic environments in Yang (2005)
and cyclic dynamic environments with noise further in Yang & Yao (2008).

This XOR DOP generator has two properties. One is that the distances among the solutions in
the search space remains unaltered after an environmental change. The other is that the properties
of the fitness landscape are not changed after an environmental change, which facilitates the analysis of
the behaviour of algorithms.

2.3.4 Dynamic travelling salesman problems. The TSP is another classical NP-complete COP. It can
be described as follows: Given a set of cities, we need to find the shortest route that starts from one city
and visits each of the other cities once and only once before returning to the starting city.

DTSPs have a wide range of real-world applications, especially in the optimization of dynamic
networks, like network planning and designing, load-balance routing and traffic management. There are
several variations of DTSPs proposed in the literature, e.g. changing the topology of cities by replacing
cities (see Guntsch & Middendorf, 2002; Mavrovouniotis & Yang, 2010, 2011b), and changing the
distances between cities by adding traffic factors to the links between cities (see Mavrovouniotis &
Yang, 2011a,d).

In Li et al. (2006), a DTSP is defined as a TSP with a dynamic cost (distance) matrix as follows:

D(t)= {dij(t)}n∗n, (2.9)

where n is the number of cities and dij(t) is the cost from city i to city j. The objective is to find a
minimum-cost route containing all cities at time t. DTSP can be defined using a function f (x, t) as
follows:

f (x, t)=Min

(
n∑

i=1

dxi,xi+1(t)

)
, (2.10)

where xi ∈ {1, 2, . . . , n} denotes the ith city in the solution such that xn+1 = x1 and ∀i, j : if i |= j, xi |= xj.
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2.3.5 Dynamic multicast routing problems in MANETs. Cheng & Yang (2010b) studied the dynamic
multicast routing problems in MANETs, where MANETs were modelled within a fixed geographical
graph, which is composed by a set of wireless nodes and a set of communication links connecting
two neighbour nodes that fall into the radio transmission range. To simulate the wireless network in
dynamic environments in the real world, two different kind of models were created, which are the
general dynamics model and the worst dynamics model, respectively. In the general dynamics model,
periodically or randomly, some nodes are scheduled to sleep or some sleeping nodes are scheduled to
wake up due to the energy conservation. While, in the worst model, each change is produced manually
by removal of a few links on the current best multicast tree.

The models can be described by a MANET G(V , E) and a multicast communication request from
node s to a set of receivers R with a delay upper bound δ. So, the dynamic delay-constrained multicast
routing problem is to find a series of trees {Ti|i ∈ {0, 1, . . .}} over a series of graphs {Gi|i ∈ {0, 1, . . .}},
which satisfy the delay constraint and have the least tree cost as follows:

max
rj∈R

⎧⎨
⎩

∑
l∈PT (s,rj)

dl

⎫⎬
⎭� δ,

C(Ti)=min
T∈Gi

⎧⎨
⎩

∑
l∈T(VT ,ET )

cl

⎫⎬
⎭ ,

where Gi(Vi, Ei) is the MANET topology after the ith change, R= {r0, r1, . . . , rm} is a set of receivers of
a multicast request, Ti(VTi , ETi) is a multicast tree with nodes VTi and links ETi , PT (s, rj) is a path from
s to rj on the tree Ti, dl represents the transmission delay on the communication link l, CTi is the cost of
the tree Ti, and δ(Pi) is the total transmission delay on the path Pi.

2.3.6 Dynamic shortest path routing problems in MANETs. Yang et al. (2010) studied the DSPRP in
MANETs, where MANETs were modelled as above within a fixed geographical graph that consists of
wireless nodes and communication links. A communication link l(i, j) cannot be used for packet trans-
mission unless both node i and node j have a radio interface each with a common channel. In addition,
message transmission on a wireless communication link will incur remarkable delay and cost.

The DSPRP can be informally described as follows. Initially, given a network of wireless routers,
a delay upper bound, a source node and a destination node, we wish to find a delay-bounded least cost
loop-free path on the topology graph. Since the end-to-end delay is a pretty important quality-of-service
(QoS) metric to guarantee the real-time data delivery, the routing path is required to satisfy the delay
constraint. Then, periodically or stochastically, due to energy conservation or some other issues, some
nodes are scheduled to sleep or some sleeping nodes are scheduled to wake up. Therefore, the network
topology changes from time to time. The objective of the DSPRP is to quickly find the new optimal
delay-constrained least cost acyclic path after each topology change.

More formally, a MANET can be modelled by an undirected and connected topology graph G(V , E),
where V represents the set of wireless nodes (i.e. routers) and E represents the set of communication
links connecting two neighbouring routers falling into the radio transmission range. A unicast com-
munication request from the source node s to the destination node r with the delay upper bound Δ. Let
G0(V0, E0) denote the initial MANET topology graph and Gi(Vi, Ei) denote the MANET topology graph
after the ith change. The delay-constrained DSPRP is to find a series of paths {Pi|i ∈ {0, 1, . . .}} over a
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series of graphs {Gi(Vi, Ei)|i ∈ {0, 1, . . .}}, which satisfy the delay constraint as shown in Equation (2.11)
and have the least path cost as shown in Equation (2.12).

Δ(Pi)=
∑

l∈Pi(s,r)

dl � Δ, (2.11)

C(Pi)=min
P∈Gi

⎧⎨
⎩
∑

l∈Pi(s,r)

cl

⎫⎬
⎭ , (2.12)

where Pi(s, r) is a path from s to r on the graph Gi, cl and dl are the cost and transmission delay on the
communication link l, respectively, Δ(Pi) is the total transmission delay on the path Pi, and C(Pi) is the
total cost of the path Pi.

2.4 Characteristics of DCOPs

As shown above, many benchmark and test DCOPs have been used in the literature. These DCOPs have
different characteristics and can be classified into different groups based on the following criteria:

• Time-linkage: whether the future behaviour of the problem depends on the current solution found
by an algorithm or not.

• Predictability: whether the changes are predictable or not.

• Visibility: whether the changes are visible to the optimization algorithm and, if so, whether changes
can be detected by using just a few detectors.

• Constrained: whether the problem is constrained or not.

• Cyclicity: whether the changes are cyclic/recurrent in the search space or not.

• Factors that change: whether changes involve objective functions, domain of variables, number of
variables, constraints and/or other parameters.

The common characteristics of the DCOPs in the literature are summarized as follows.

• Most DCOPs are non-time-linkage problems. There are only a couple of time-linkage test problems
(see Bosman, 2007; Bosman & Poutré, 2007a).

• In the default settings of most DCOPs, changes are detectable by using just a few detectors. Due to
their highly configurable property some benchmark generators can be configured to create scenarios
where changes are more difficult to detect.

• In most cases, the factors that change are the objective functions. Exceptions are the problems by
Cheng & Yang (2011, 2010a,b), Li & Yang (2008) and Mavrovouniotis & Yang (2010) where the
dimension or problem size also changes.

• Many DCOPs have unpredictable changes in their default settings. Some of the generators/problems
can be configured to allow predictable changes, at least in the frequency and periodicity of changes
(see Simões & Costa, 2008).

• A majority of DCOPs have cyclic/recurrent changes.
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• Most DCOPs assume periodical changes, i.e. changes occur every fixed number of generations or
fitness evaluations. An exceptional work is that Simões & Costa (2008) studied the cases where the
changes occur in some time pattern.

Further details on the charactersitcs of DCOPs, and DOPs, in general, can be found in Nguyen
(2011).

3. Metaheuristics for DCOPs: performance measures and methodologies

For stationary COPs, usually, the goal of a metaheuristic algorithm is to find the global optimum as
fast and precisely as possible, and the performance measures used to evaluate an algorithm are the con-
vergence speed and the rate of achieving the optimum over multiple runs. However, for metaheuristics
for DCOPs, the goal of an algorithm turns from finding the global optimum to tracking the changing
optima as closely as possible over time. This requires an algorithm to firstly detect the changes and
secondly track the changing optima (local optima or ideally the global optimum). In addition, in case
the problems before and after a change somehow correlate with each other, an optimization algorithm
is also expected to learn from its previous search experience as much as possible to hopefully progress
the search more effectively. Otherwise, the optimization process after each change will simply become
the process of solving a different problem starting from the old population.

The new requirements raised by DCOPs, i.e. tracking changing optima and transferring knowl-
edge from previous search experience, imply that it would be better to use a population of indi-
viduals/searchers instead of a single individual (see Cruz et al., 2011). Hence, over the last two
decades, researchers have mainly applied population-based metaheuristics, e.g. GAs (see Cheng &
Yang, 2010a,b), ACO (see Mavrovouniotis & Yang, 2010, 2011a,b,d), AISs (see Hart & Ross, 1999),
estimation of distribution algorithms (see Fernandes et al., 2008), to solve DCOPs (as well as other
DOPs). Cruz et al. (2011) and Nguyen et al. (2012) have summarized different metaheuristics applied
to general DOPs in the literature and relevant researchers.

The new requirements raised by DCOPs also make it difficult, if not infeasible, for the traditional
metaheuristics to solve them satisfactorily. Hence, researchers need to develop new methodologies to
modify metaheuristics to solve DCOPs and also develop/use new performance measures to evaluate the
performance of metaheuristics for DCOPs. The following subsections will first briefly describe com-
monly used performance measures for evaluating metaheuristics for DCOPs and then review typical
approaches that have been developed to enhance metaheuristics to satisfy the aforementioned require-
ments for solving DCOPs.

3.1 Performance measures

In order to compare metaheuristics for DOPs, researchers have also developed/used a number of dif-
ferent performance measures, e.g. accuracy by Trojanowski & Michalewicz (1999), collective mean
fitness (CMF) by Morrison (2003), mean best-of-generation fitness by Yang & Yao (2003), offline error
and offline performance by Branke (2001), Branke & Schmeck (2003), optimization accuracy, stability
and reactivity by Weicker (2003). A brief summary of the most used measures for metaheuristics for
DOPs is presented in Cruz et al. (2011, Table 4), where over 20 measures are listed. It is notable that
many of these performance measures were proposed for evaluating generation-based metaheuristics,
especially EAs, for DOPs. However, with proper modification, they are also applicable for evaluating
non-generation-based metaheuristics for DOPs. Some of these measures are also suitable and applied
for metaheuristics for DCOPs. The widely used performance measures for evaluating metaheuristics for
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DCOPs are described as follows. A further detailed list of performance measures for DOPs and DCOPs
can be found in Nguyen (2011, Section 2.2).

3.1.1 Collective mean fitness. This measure was first used by Morrison (2003) with the name of CMF
and Yang & Yao (2003) with the name of mean best-of-generation fitness. This measure is calculated as
the average for many runs of the best values at each generation on the same problem as follows:

F̄BOG = 1

G
×

i=G∑
i=1

⎛
⎝ 1

R
×

j=R∑
j=1

FBOGij

⎞
⎠ , (3.1)

where F̄BOG is the mean best-of-generation fitness, G is the total number of generations allowed for a
run, R is the total number of runs and FBOGij is the best-of-generation fitness of generation i of run j of
an algorithm on a particular problem. The CMF measure is one of the most commonly used measures
in metaheuristics for DCOPs.

The advantage of this measure is to enable algorithm designers to quantitatively compare the perfor-
mance of algorithms. The disadvantage of the measure and its variants is that they are not normalized,
hence can be biased by the difference of the fitness landscapes at different periods of change. For exam-
ple, if at a certain period of change the overall fitness values of the landscape is particularly higher
than those at other periods of changes, or if an algorithm is able to get particular high fitness value at a
certain period of change, the final F̄BOG might be biased toward the high fitness values in this particular
period and hence might not correctly reflect the overall performance of the algorithm. Similarly, if F̄BOG

is used to evaluate the mean performance of algorithms in solving a group of problems, it is also biased
toward problems with larger fitness values.

3.1.2 Accuracy. The accuracy measure was proposed by Trojanowski & Michalewicz (1999), which
is calculated as the average of the smallest errors (the difference between the optimum value and the
value of the best individual) achieved at the end of each change period (i.e. right before the moment of
change), as follows:

EB = 1

m

m∑
i=1

eB(i), (3.2)

where m is the total number of changes for a run and eB(i) is the best error just before the ith change
occurs.

This measure is especially useful in situations where we are interested in the final solution that the
algorithm achieved before the change. The measure also makes it possible to compare the final outcome
of different algorithms. However, the measure also has three important disadvantages. First, it does
not say anything about how the algorithms have done to achieve their performances. As a result, the
measure is not suitable if what users are interested in is the overall performance or behaviours of the
algorithms. Secondly, similar to the best-of-generation measure, this measure is also not normalized and
hence can be biased towards periods where the errors are relatively large. Finally, the measure requires
that the global optimum value at each change is known.

 by guest on July 29, 2013
http://im

am
an.oxfordjournals.org/

D
ow

nloaded from
 

http://imaman.oxfordjournals.org/


METAHEURISTICS FOR DCOPs 461

3.1.3 Offline error and offline performance. These two performance measures were proposed by
Branke (2001) and Branke & Schmeck (2003). The offline error is measured as the average over, at
each evaluation, the error of the best solution found since the last change of the environment. This
measure is always greater than or equal to zero and would be zero for a perfect performance.

Et
offline =

1

t

t∑
j=1

ebest(j), (3.3)

where t is the number of generations so far, and ebest(j) is the best error gained by the algorithm at
generation j since the last change.

Similar to the offline error measure, the offline performance measure is proposed to evaluate algo-
rithms in case the exact values of the global optima are unknown, which is calculated as follows:

Pt
offline =

1

t

t∑
j=1

fbest(j), (3.4)

where t is the number of generations so far, and fbest(j) is the best performance gained by the algorithm
at generation j since the last change.

With this type of measures, the faster the algorithm to find a good solution, the higher the score. Sim-
ilar to the F̄BOG, the offline error/performance are also useful in evaluating the overall performance of
an algorithm and to compare the final outcomes of different algorithms. These measures, however, have
some disadvantages. First, they require that the time when a change occurs is known. Secondly, similar
to F̄BOG, these measures are also not normalized and hence can be biased under certain circumstances.

3.1.4 Optimization accuracy. The optimization accuracy measure (also known as the relative error)
was initially proposed by Feng et al. (1997) and was adopted by Weicker (2002) for the dynamic case,
which is calculated as follows:

accuracyt = Bestt −Mint

Maxt −Mint , (3.5)

where Bestt is the fitness of the best individual in the population at time t, Maxt ∈R and Mint ∈R are
the best and worst fitness values of the search space, respectively. The range of the accuracy measure is
from 0 to 1, with a value of 1 and 0 represents the best and worst possible values, respectively.

The optimization accuracy have the same advantages as the F̄BOG and Eoffline in providing
quantitative value and in evaluating the overall performance of algorithms. The measure has an advan-
tage over F̄BOG and Eoffline: it is independent to fitness rescalings and hence has become less biased to
those change periods where the difference in fitness becomes particularly large. The measure, however,
has a disadvantage: it requires information about the absolute best and worst fitness values in the search
space, which might not always be available in practical situations. In addition, as pointed by Weicker
(2002) himself, the optimization accuracy measure is only well defined if the complete search space is
not a plateau at any generation t, because otherwise the denominator of Equation (3.5) at t would be zero.

3.1.5 Stability and robustness. Some studies also developed measures to evaluate the ability of
algorithms in restricting the drop of fitness when a change occurs, of which the most representative
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measures are stability by Weicker (2002) and robustness by Rand & Riolo (2005). The measure stabil-
ity is evaluated by calculating the difference in the fitness-based accuracy measure (see Equation (3.5))
of the considered algorithm between each two time steps as follows:

stabilityt =max{0, accuracy(t−1) − accuracyt}, (3.6)

where accuracyt has already been defined in Equation (3.5).
The robustness measure, similar to the stability measure, also determines how much the fitness of

the next generation of the EA can drop, given the current generation’s fitness. The measure is calculated
as the ratio of the fitness values of the best solutions (or the average fitness of the population) between
each two consecutive generations.

3.1.6 Reactivity, recover rate and absolute recover rate. Convergence speed after changes, or the
ability of the algorithm to recover quickly after a change, is also an aspect that attracts the attention
of various studies in metaheuristics for DOPs and DCOPs. Weicker (2002) also proposed a reactivity
measure dedicated to evaluating the ability of an adaptive algorithm to react quickly to changes, which
is defined as follows:

reactivityt
ε =min

{
t′ − t

∣∣∣∣∣accuracyt′

accuracyt
� (1− ε)

}
∪ {maxgen− t}, (3.7)

where t, t′ ∈N, t < t′ � maxgen, ε is a preset precision parameter, and maxgen is the number of gener-
ations in population-based metaheuristics such as EAs. The reactivity measure has a disadvantage: it is
only meaningful if there is actually a drop in performance when a change occurs; otherwise, the value
of the measure is always zero and nothing can be said about how well the algorithm reacts to changes.

To provide more insights into the convergence behaviour of algorithms, recently a pair of measures,
the recovery rate (RR) and the absolute recovery rate (ARR) were proposed by Nguyen & Yao (2011,
2012). The RR measure is used to analyse how quick an algorithm can recover from an environmental
change and to start converging on a new solution before the next change occurs. The ARR measure
is used to analyse how quick an algorithm can start converging on the global optimum before the next
change occurs. The RR and ARR measures can be used together in an RR–ARR diagram (see Nguyen
& Yao, 2012, Fig. 1) to indicate whether an algorithm is able to converge to the global optimum; or
whether it suffers from slow or pre-mature convergence.

3.2 Methodologies

As mentioned before, DCOPs pose new challenges to the design of traditional metaheuristics. New
approaches are needed to enhance traditional metaheuristics to solve DCOPs. A simplest way for a
metaheuristic algorithm to deal with DCOPs is to restart it from scratch whenever a change is detected
or informed. Although the restart scheme does work for some special cases (see Yang & Yao, 2005),
for most cases, it is more efficient to develop other approaches that can make use of knowledge gath-
ered from previously encountered environments. Below, we briefly review each class of approaches to
enhancing metaheuristics for DCOPs. An example list of academic and real-world DCOPs that were
solved using each approach is provided in Table 1.
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Table 1 Examples of academic and real-world DCOPs that were solved using dynamic optimization
metaheuristics techniques

Approach Academic combinatorial problems Real-world problems

Tracking DKP (Randall, 2005; Moser & Hendtlass,
2006; Yang, 2008).

Take-off runway scheduling problem
(Atkin et al., 2008)

Dynamic vehicle routing problem with
time window (Housroum et al., 2006)

Aircraft landing problem (Moser &
Hendtlass, 2007)

Dynamic OneMax problem (Yang, 2008) Document stream modelling problem
(Araujo & Merelo, 2007)

Plateu function (Yang, 2008) Dynamic route planning for car
navigation in Japan (Kanoh, 2007;
Kanoh & Hara, 2008)

DTSP (Li et al., 2006) Evolvable hardware problem (Tawdross
et al., 2006)

Various dynamic scheduling problems
(Ouelhadj & Petrovic, 2009)

Adaptive contamination source
identification problem (Liu, 2008)

Introducing/
maintaining
diversity

Dynamic facility layout problem
(Balakrishnan & Cheng, 2000)

Ship scheduling problem (Mertens et al.,
2006)

DTSP (Eyckelhof et al., 2002; Angus &
Hendtlass, 2002; Mavrovouniotis &
Yang, 2011d)

Hydrothermal scheduling problem for
electricity generators (Deb et al., 2007)

DKP (via the XOR benchmark) (Yang &
Yao, 2005; Yang, 2008)

Dimensioning and load balancing for
multi-topology Interior Gateway
Protocol traffic (Wang et al., 2008)

Dynamic decomposable unitation-based
and deceptive Functions (Yang & Yao,
2008; Yang, 2005)

DSPRP in MANET (Cheng & Yang,
2010b)

Dynamic OneMax (Yang, 2005, 2008)
NK problems (Yang, 2005, 2008)

Memory Oscillating 0–1 knapsack problem
(Goldberg & Smith, 1987; Lewis et al.,
1998)

Document stream modelling problem
(Araujo & Merelo, 2007)

DKP (Simões & Costa, 2007; Yang,
2008, 2005)

Dynamic route planning for car
navigation system in Japan (Kanoh,
2007; Kanoh & Hara, 2008)

Dynamic OneMax (Simões & Costa,
2007; Yang, 2008, 2005)

Dynamic decomposable unitation-based
functions (Yang & Yao, 2008)

Plateau function (Yang, 2008)
Royal Road problem (Yang, 2005, 2003)
Deceptive problems (Yang, 2005, 2003)

Prediction The inventory management problem
(Bosman & Poutré, 2007a)

Dynamic vehicle routing/scheduling
problems with real-time traffic
information (Kim et al., 2005; Eglese
et al., 2006; Kanoh, 2007; Kanoh &
Hara, 2008)

Continued
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Table 1 Continued

Approach Academic combinatorial problems Real-world problems

Dynamic job-shop scheduling problem
(Branke & Mattfeld, 2005)

Dynamic supply-chain configurations
problem (Akanle & Zhang, 2008)

Dynamic pickup problem (Bosman &
Poutré, 2007b)

Airlift mission monitoring and dynamic
rescheduling problem (Wilkins et al.,
2008)

Dynamic bit matching problem (Simões
& Costa, 2008)

Dynamically managing restaurant tables
using constraints (Vidotto et al., 2007)

DKPs (Simões & Costa, 2009) Dynamic assignment problem in P2P
networks (Martinez et al., 2008)

The take-off runway scheduling (Atkin et
al., 2008)

The dynamic dimensioning and load
balancing for IGP network traffic
(Wang et al., 2008)

Multi-
population

Dynamic oscillating 0/1 knapsack
problem (Klinkmeijer et al., 2006)

Adaptive QoS routing in MANET
(Kotecha & Popat, 2007)

DKP (Yang & Yao, 2003), Royal-road
and deceptive functions (Yang & Yao,
2005)

DSPRP in MANET (Cheng & Yang,
2010b)

Dynamic decomposable unitation-based
functions (Yang & Yao, 2008)

Dynamic Royal-road, deceptive and
scaling functions (Tinós & Yang, 2007)

A more detailed survey of methodologies for solving DCOPs and DOPs can be found in Nguyen
(2011, Section 2.1).

3.2.1 Tracking. The simplest, most obvious and commonly used technique in metaheuristics is track-
ing, i.e. to start from the previous optimal solutions found just before the change occurs. The purpose of
tracking is two-fold. First, in case there is some correlation between the changes, starting from previous
solutions may increase the chance to find the new optimum. Second, starting from existing solutions
may minimize the risk of significantly changing the existing system, and hence reduce the operational
cost. This purpose is particularly important in real-world applications (Nguyen, 2011).

In solving DCOPs using the tracking technique, the previously found solution is generally incre-
mentally updated to adapt to the new change (Atkin et al., 2008; Deb et al., 2007; Kanoh, 2007; Kanoh
& Hara, 2008; Moser & Hendtlass, 2007; Yang, 2008). If this newly updated solution becomes infeasi-
ble after a change, it is repaired by removing/replacing the components that make it infeasible (Moser &
Hendtlass, 2006; Randall, 2005). The existing solution may need to be ‘deconstructed’ first to determine
which of its components should be discarded due to constraint violation (Randall, 2005). The reusable
parts of the existing solutions are then generally copied directly to all individuals or at least part of
the population to deal with the new dynamic environment. In many cases, the fact that new solutions
should be created from old solutions to minimize the amount of changing cost is even a requirement
(Mertens et al., 2006; Ngo et al., 2006; Wang et al., 2008). Furthermore, sometimes large deviations
from previous solution are penalized (Atkin et al., 2008; Beasley et al., 2004). It was also suggested that
tracking were prefered over restarting because it could help produce a good solution faster (Araujo &
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Merelo, 2007). Experiments confirmed that tracking is able to provide better performance than restarting
(Eyckelhof et al., 2002; Mertens et al., 2006) in the considered DCOPs.

3.2.2 Introducing and/or maintaining diversity. In stationary optimization, the convergence of a
population-based metaheuristic is required so that an algorithm could focus on finding the best solu-
tion in the promising region. In dynamic optimization, however, convergence may result in negative
effects, since if the dynamic landscape changes in one area and there is no member in the population for
the algorithm in this area, the change will become undetected. As a result, it is impossible for a standard
metaheuristic to detect a change once it has already converged.

Intuitively, one simple solution to this drawback is to increase/maintain the diversity of the popula-
tion. In solving DCOPs, one of the common way to maintain diversity is to introduce random individuals
(random immigrants) to the population (Balakrishnan & Cheng, 2000; Deb et al., 2007; Cheng & Yang,
2010b; Yang & Yao, 2005) or to introduce the mutated versions of existing individuals (Deb et al., 2007;
Mavrovouniotis & Yang, 2011d; Yang, 2005, 2008). Another way is to bias the selection process so that
less good but more diversified solutions are retained for the next generation. In solving the dynamic TSP
using ant colony, Eyckelhof et al. (2002) reduced the pheromone levels of better roads and increased the
pheromone levels in worse roads so that some of the worse roads will be chosen. The level of diversity
can be adaptively controlled by the evolutionary process, as in Yang & Yao (2005, 2008).

3.2.3 Memory. If changes in DCOPs are cyclic or recurrent, i.e. the optima could return to the regions
near to previous locations, then it would be useful to employ memory, i.e. to re-use previously found
solutions to save computational time and bias the search process. The memory plays the role as a
reserved place storing old solutions for maintaining diversity when needed. The memory can be inte-
grated implicitly in EAs, or explicitly as a separate component. In the case of implicit memory, redun-
dant coding using multiploid genomes (a chromosome contains two or more alleles (i.e., gene values) at
each locus, each corresponds to a specific state of a dynamic environment) is the most commonly used
approach for solving DCOPs, e.g. see Goldberg & Smith (1987), Lewis et al. (1998), Uyar & Harmanci
(2005) and Yang (2006c). In these studies, whenever a change occurs the algorithm will choose among
the available alleles the most suitable one for the current environmental state. Another interesting exam-
ple of implicit memory is in Eyckelhof et al. (2002) (solving the DTSP) where existing solutions were
prevented from being eliminated so that they could be used in the future. This was done by setting a
lower boundary for the fitness values of existing solutions (previous found roads) so that they never
approach zero.

In the case of using explicit memory to solve DCOPs, the memory can be maintained directly in
the form of previous good solutions (Guntsch & Middendorf, 2002; Louis & Xu, 1996; Yang, 2005,
2006a; Yang & Yao, 2008; Yu & Suganthan, 2009; Mavrovouniotis & Yang, 2011d), or indirectly in
the form of associative information. Various types of associative information can be included, e.g. the
environment at a given time (Eggermont et al., 2001); the list of environmental states and state transition
probabilities (Simões & Costa, 2008); successful individuals for certain types of changes (Simões &
Costa, 2003; Yang, 2006b); the probability vector that created the best solutions (Yang & Yao, 2008) or
the distribution statistics of the population at a given time (Yang, 2006a).

Regarding how to update the memory, usually the best found elements (direct or associative) in a
generation are used to update the memory. A newly found element replaces an existing element in the
memory, which can be the oldest member in the memory (Eggermont et al., 2001; Simões & Costa,
2007), the one with the least contribution to the diversity of the population (Eggermont et al., 2001;
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Simões & Costa, 2007; Yang, 2005; Yang & Yao, 2008), or the one with the least contribution to fitness
(Eggermont et al., 2001).

Once the memory has been established, during the search usually the best elements in the memory
(i.e. the ones that show the best results when being re-evaluated) will be used to replace the worst
individuals in the population.

Memory approaches are particularly useful for solving problems with cyclically changing environ-
ments. For example, Yang (2008) showed that the memory-based versions of GA and random-immigrant
significantly outperform the original algorithms in cyclic DCOPs.

3.2.4 Learning and prediction. In cases where changes exhibit some predictable patterns, it might
be sensible to try to learn these types of patterns from the previous search experience and based on
these patterns try to predict changes in the future. Some studies have been produced following this idea
to exploit the predictability of dynamic environments. On academic problems, most current prediction
approaches have been applied to the continuous domain (see reviews in Nguyen et al., 2012; Nguyen,
2011), but there are some research in the combinatorial domain as well. For example, on the dynamic bit
matching and DKP, Simões & Costa (2008, 2009) predicted the future moment when the next change
will occur and possible environments that will appear in the next change.

There are also some studies (Bosman, 2005, 2007; Bosman & Poutré, 2007b; Nguyen & Yao, 2009)
on time-linkage problems, i.e. problems where the current solutions found by the algorithms can influ-
ence the future dynamics. In such problems, it was suggested that the only way to solve the problems
effectively is to anticipate or predict future changes and take into account the possible future outcomes
given the current solutions, when solving the problems online. Time-linkage prediction based on learn-
ing was made successfully on DCOPs such as the dynamic pickup problem and the inventory manage-
ment problem (Bosman & Poutré, 2007a) and the dynamic supply-chain configuration problem (Akanle
& Zhang, 2008). Anticipation of future changes based on expert knowledge was made on DCOPs such
as the take-off runway scheduling problem (Atkin et al., 2008), dynamic vehicle routing/scheduling
problems with real-time traffic information (Eglese et al., 2006; Kanoh, 2007; Kanoh & Hara, 2008;
Kim et al., 2005), dynamic dimensioning and load balancing problem for IGP network traffic (Wang
et al., 2008), airlift mission monitoring and dynamic rescheduling problem (Wilkins et al., 2008), man-
aging restaurant tables subject to constraints (Vidotto et al., 2007) and dynamic assignment problem
in P2P networks (Martinez et al., 2008). Another related study is the anticipation approach (Branke &
Mattfeld, 2005) in solving dynamic scheduling problems where in addition to finding good solutions,
the solver also tries to move the system ‘into a flexible state’ where adaptation to changes can be done
more easily.

For details of how the prediction and/or anticipation are implemented, readers are referred to Nguyen
(2011, Chapter 3 and Tables 1–4 in the appendix).

3.2.5 Multi-population. Another approach, which to some extent can be seen as a combination of
some or all of the previous approaches, uses multiple sub-populations concurrently in which each sub-
population may handle a separate area of the search space and each of them may also take responsibility
for a separate task.

One of the main goals of using multiple populations in solving DCOPs is to monitor multiple sub-
optimal solutions in a hope that when a change occurs, one of such solution might become the global
optimum, or at least becomes close to the global optimum. This also helps in maintaining diversity. In
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Kotecha & Popat (2007) (dynamic QoS routing in MANETs), each sub-population focuses on monitor-
ing the best routes to one different destination in the hope that when changes occurs this route might
become (a part of) the global optimum. In Cheng & Yang (2010b); Klinkmeijer et al. (2006) (shortest
path in MANETs and dynamic (oscillatory) 0/1 knapsack problem, respectively), each sub-population
represents an area around a local optimum and when changes occur all the sub-populations will be
reevaluated and updated.

Each sub-population might have a different role/responsibility. In Cheng & Yang (2010b) one sub-
population is used for exploring, while others are used for exploiting/tracking. In Klinkmeijer et al.
(2006), at one time there is only one active subpopulation while the rest function as memory and will
only be reactivated when a change occurs. In Yang & Yao (2003) and Yang (2008), each subpopu-
lation has a different search strategies, e.g. one has a higher diversity rate than another. In Tinós &
Yang (2007), one subpopulation is dedicated to preserve diversified individuals generated for diversity
purpose.

The multi-population approach is more commonly used in the continuous domain than in the com-
binatorial domain.

4. Case study

In previous sections, we have introduced/reviewed the domain of metaheuristics for DCOPs from
different aspects and at a top level of viewpoint. In this section, in order to present a deeper and more
comprehensive view on how to use a metaheuristic method to solve a DCOP, we present a case study
taken from the literature on ACO algorithms with immigrants schemes for solving the DTSP with traffic
factors by Mavrovouniotis & Yang (2011a,c,d).

4.1 The DTSP with traffic factors

Mavrovouniotis & Yang (2011a,c,d) investigated the DTSP with traffic factors, where the cost of the
link between cities i and j is assumed to be Dij =Dij × Fij, where Dij is the normal travelled distance and
Fij is the traffic factor between cities i and j. When the problem is to be changed (e.g. every f iterations
of an ACO algorithm), a random number R in [FL, FU] is generated probabilistically to represent traffic
between cities, where FL and FU are the lower and upper bounds of the traffic factor, respectively. Each
link has a probability m to add traffic such that Fij = 1+ R, where the traffic factor of the remaining links
is set to 1 (indicating no traffic). Note that f and m denote the frequency and magnitude of the changes in
the dynamic environment, respectively. This type of environments are denoted random DTSPs because
previously visited environments are not guaranteed to reappear.

Another variation of the DTSP with traffic factors is the DTSP where the dynamic changes occur
with a cyclic pattern. This type of environments are denoted as cyclic DTSPs because previously visited
environments will reappear in the future. A cyclic environment can be constructed by generating differ-
ent dynamic cases with traffic factors as the base states, representing DTSP environments where each
link has a probability m to add low, normal or high traffic as in random DTSPs. Then, the environment
cycles among these base states, every f iterations, in a fixed logical ring order. Figure 1 illustrates the
difference between a random DTSP and a cyclic DTSP.

4.2 Standard ACO and population-based ACO algorithms for the DTSP

The ACO algorithm was first proposed and applied for the stationary TSP (Colorni et al., 1992; Dorigo,
1992), which imitates the behaviour of real ants when they search for food from their nest to a food
source. Ants communicate using pheromone, which is a chemical substance produced by them and is
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(a) Random DTSP (b) Cyclic DTSP

Fig. 1. Illustration of (a) a random DTSP with unlimited states in the dynamic environment and (b) a cyclic DTSP with eight
states in the dynamic environment. Each node represents a state in the dynamic environment (or an environment in short), and
white, light grey and dark grey represent low, medium and high traffic jams, respectively.

applied to their trails. The more pheromone on a specific trail, the higher the possibility of that trail to be
followed by ants. Using this scheme, ants indirectly communicate and cooperate to complete their food
searching task as efficiently as possible. Nowadays, ACO algorithms have been successfully applied for
different COPs (Dorigo & Stützle, 2004).

The standard ACO (S-ACO) algorithm (i.e. Max–Min AS (MMAS)) (see Stuetzle & Hoos, 2000),
consists of a population of μ ants. Initially, all ants are placed to a randomly selected city and all
pheromone trails are initialized with an equal amount of pheromone. With a probability 1− q0, where
0 � q0 � 1 is a parameter of the decision rule, ant k chooses the next city j, while its current city is i,
probabilistically, as follows:

pk
ij =

[τij]α[ηij]β∑
l∈Nk

i
[τil]α[ηil]β

if j ∈Nk
i , (4.1)

where τij and ηij = 1/Dij are the existing pheromone trails and heuristic information available a priori
between cities i and j, respectively, Nk

i denotes the neighbourhood of cities of ant k that have not yet been
visited when its current city is i, and α and β are the two parameters that determine the relative influence
of pheromone trail and heuristic information, respectively. With the probability q0, ant k chooses the
next city with the maximum probability, i.e. [τ ]α[η]β , and not probabilistically as in Equation (4.1).

Later on, the best ant retraces the solution and deposits pheromone according to its solution quality
on the corresponding trails as follows:

τij← τij +Δτ best
ij ∀(i, j) ∈ Tbest, (4.2)

where Δτ best
ij = 1/Cbest is the amount of pheromone that the best ant deposits and Cbest is the tour cost

of Tbest. However, before adding any pheromone, a constant amount of pheromone is deduced from
all trails due to the pheromone evaporation such that, τij← (1− ρ)τij, ∀(i, j), where 0 < ρ � 1 is the
rate of evaporation. The pheromone trail values are kept to the interval [τmin, τmax], where τmin and τmax

denote the minimum and maximum pheromone amount, respectively, and they are re-initialized to τmax
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every time the algorithm shows a stagnation behaviour, where all ants follow the same path, or when no
improved tour has been found for several iterations).

The population-based ACO (P-ACO) algorithm by Guntsch & Middendorf (2002) is the memory-
based version of ACO. The algorithm maintains a population of K ants (solutions), called population-list
(memory) and denoted as klong, which is used to update pheromone trails without any evaporation. The
initial phase and the first iterations of the P-ACO algorithm work in the same way as with the S-ACO
algorithm. The pheromone trails are initialized with an equal amount of pheromone and the population-
list is empty. For the first K iterations, the iteration-best ant deposits a constant amount of pheromone,
using Equation (4.2) with Δτ best

ij = (τmax − τinit)/K, where τinit denotes the initial pheromone amount.
This positive update procedure is performed whenever an ant enters into the population-list. At iteration
K + 1, the ant that has entered into the population-list first, i.e. the oldest ant, needs to be removed in
order to make room for the new one, and its pheromone trails are reduced by Δτ best

ij , which equals to
the amount added when it entered the population-list before. The population-list klong is a long-term
memory since it may contain ants from previous environments that survive in more than one iteration.
Therefore, when a change occurs, the ants stored in klong are re-evaluated in order to be consistent with
the new environment where different traffic factors Fij are introduced. The pheromone trails are updated
accordingly using the ants currently stored in klong.

4.3 ACO algorithms with immigrants schemes for the DTSP

Both S-ACO and P-ACO algorithms face the convergence problem when applied to the DTSP. For
S-ACO, from the initial iterations the population of ants will eventually converge to a solution, and,
thus, high intensity of pheromone trails will be generated on a single path. The pheromone trails will
influence ants forwarding them to the best path in hand even after a dynamic change. For P-ACO,
identical ants may be stored in the population-list and dominate the search space with a high intensity
of pheromone to a single trail. In order to handle the problem faced by S-ACO and P-ACO algorithms
when addressing DTSPs, immigrants schemes have been integrated with ACO, see Mavrovouniotis &
Yang (2010, 2011a,d), since they maintain a certain level of diversity during the execution and transfer
knowledge from previous environments.

The framework of ACO algorithms with immigrants schemes is inspired by the P-ACO frame-
work. Considering that P-ACO maintains a population of solutions, immigrant ants can be generated
to replace ants in the current population. The main idea is to generate the pheromone information for
every iteration considering information from the pheromone trails of the previous environment and extra
information from the immigrant ants generated. Therefore, instead of using a long-term memory klong

as in P-ACO, a short-term memory, denoted kshort, of size Ks is used, where all ants stored from iteration
t − 1 are replaced by the first Ks best ants of the current iteration t, instead of only replacing the oldest
one as in P-ACO. Moreover, a predefined number of immigrant ants are generated and replace the worst
ants in kshort, where the number of immigrant ants is usually small in comparison to Ks. When new ants
are added to kshort, a positive update is made to their pheromone trails, and when ants are removed from
kshort, a corresponding negative update is made to their pheromone trails as in P-ACO.

Different ACO variants have been developed with the integration of immigrants schemes with
P-ACO. They differ from each other in the way immigrants are generated. Mavrovouniotis & Yang
(2010) investigated the random immigrants ACO (RIACO), elitism-based immigrants ACO (EIACO)
and hybrid immigrants ACO (HIACO), where immigrant ants in RIACO and EIACO are generated
randomly and using the best ant from kshort, respectively, and in HIACO part of the immigrants are gen-
erated randomly and part are generated using the best ant from kshort. In the memory-based immigrants
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ACO (MIACO) studied in Mavrovouniotis & Yang (2011a), immigrant ants are generated using the best
ant from klong. In EIACO and MIACO, the information obtained from the elitism- and memory-based
immigrants to transfer knowledge is based on individual information (i.e. one ant). In Mavrovouniotis
& Yang (2011d), an environmental information-based immigrants ACO (EIIACO) algorithm was pro-
posed where immigrants ants are generated using environmental information (i.e. all the ants stored in
kshort) to transfer knowledge from the previous environment to a new one.

4.4 Experimental results

Mavrovouniotis & Yang (2011c) experimentally studied the above ACO variants on a set of DTSPs with
traffic factors with different dynamics settings, including both random and cyclic environments, and
compared their performance based on the CMF measure. From the experimental results and analyses,
the following conclusions can be drawn.

• Immigrants schemes improve the performance of ACO for DTSPs.

• RIACO is advantageous in fast and significantly changing environments.

• EIACO is advantageous in slowly and slightly changing environments.

• HIACO promotes the performance of EIACO in slowly changing environments, while it slightly
degrades the performance of RIACO in fast changing environments.

• MIACO is advantageous in cyclic changing environments, where previous environments will
re-appear.

• EIIACO promotes the performance of EIACO in environments with significant changes.

• Transferring too much knowledge from previous environments may degrade the performance.

• A high level of diversity does not always improve the performance of ACO in DTSPs.

In general, almost all ACO algorithms with immigrants schemes outperform ACO algorithms with-
out them. Furthermore, different immigrants schemes are beneficial in different dynamic environments.

4.5 Steps on metaheuristics for DCOPs

The above case study, though focusing on ACO algorithms for the DTSP, demonstrates general steps
needed to apply/design a given metaheuristic for a specific DCOP, which may be summarized as follows.

Step 1: Model the specific DCOP using a proper formulation and representation.

Step 2: Specialize the given metaheuristic properly so that it is suitable for solving the stationary
version of the specific DCOP.

Step 3: Modify the specialized metaheuristic properly via integrating different approaches described
in Section 3.2 to improve its performance for the specific DCOP.

Step 4: Run the obtained metaheuristic to solve the specific DCOP.

Note that, in Step 3, we may use the domain knowledge to help us analyse the characteristics of
the specific DCOP and decide which approaches to be integrated into our specialized metaheuristic.
In Step 4, we may carry out preliminary experiments to further tune the obtained metaheuristic for the
specific DCOP.
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5. Challenges

In this section, we discuss some key challenges relevant to the domain of metaheuristics for DCOPs.
Some of these challenges are specific to metaheuristics for DCOPs while some others apply to meta-
heuristics for general DOPs.

5.1 Detecting changes

For a metaheuristic to efficiently solve a DCOP, usually it needs to first detect changes and then take
proper actions when they occur. So, how to detect changes effectively is an important issue for a meta-
heuristic method to solve DCOPs effectively. However, in the literature on metaheuristics for DCOPs,
most studies assume that changes are easy to detect by a few detectors via monitoring possible changes
in their fitness values, or a change becomes visible to an algorithm directly whenever it occurs. This
assumption does not always hold. For many DCOPs, changes may be very difficult or even impossible
to detect, see (Li, 2011, Chapter 6) and (Richter, 2009). For example, in a DTSP with traffic factors, if a
change only affects those links that are not present in the detector solutions, it cannot be detected by the
detectors. And if a change only affects those links that are not present in all individuals of the current
population, it cannot be detected by the current population, which is more possible when the current
population becomes converged. The DKP with changing capacity for the knapsack is another example
where changes may be difficult to detect. Here, a change can be detected by monitoring the fitness of an
individual over two successive generations if the capacity of the knapsack is reduced. But, on the other
hand, if the capacity is increased, the change will go undetected.

In order to address the issue of hard-to-detect changes, there are two options. One is to design more
effective detection techniques, e.g. increasing the number of detectors and distributing them in a wider
area of the search space. However, this may involve more computational cost in terms of fitness evalu-
ations. Another option, which may be better, is to build effective approaches into metaheuristics that do
not need to detect changes at all, e.g. using diversity maintaining approaches instead of approaches that
increase diversity after a change is detected.

5.2 Understanding the characteristics of DCOPs

In order to understand whether a metaheuristic method can solve a DCOP well or not, we need to under-
stand what characteristics contribute to the hardness/easiness of a DCOP for metaheuristics, which is a
challenging task for the domain. To this purpose, we need to not only understand the characteristics of
the base COP from which a DCOP is constructed, but also study the relationship between the dynam-
ics (e.g. changes in parameters) and changes in the fitness landscape. There have been recent studies
devoted to this issue, of which some are briefly described below.

Branke et al. (2005) analysed the changes of the fitness landscape due to changes of the underlying
problem instance and proposed a number of measures that are helpful to understand what aspects of the
fitness landscape change and what information can be carried over from one stage of the problem to
the next. They applied these measures to several instances of a DMKP, which resulted with interesting
observations. Branke et al. (2006) further analysed the role of representation on the fitness landscape
based on the DMKP.

Rohlfshagen & Yao (2008, 2010) analysed the properties of a dynamic subset sum problem and
investigated the correlation between the dynamic parameters of the problem and the resulting movement
of the global optimum. Interestingly, the authors showed empirically that the degree to which the global
optimum moves in response to the underlying dynamics is correlated only in specific cases.
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Tinos & Yang (2010) further analysed the properties of the XOR DOP generator based on the
dynamical system approach of the GA proposed by Vose (1999), and showed that a DOP generated
by the generator can be described as a DOP with permutation, where the fitness landscape is changed
according to a permutation matrix. Hence, the XOR DOP generator can be simplified by moving the
initial population of a change cycle instead of rotating each individual prior to each fitness evaluation.

Richter (2010) analysed and quantified the properties of spatio-temporal fitness landscapes con-
structed from CML using topological and dynamical landscape measures such as modality, ruggedness,
epistasis, dynamic severity, and two types of dynamic complexity measures, Lyapunov exponents and
bred vector dimension. Experiments were also carried out to study the relationship between these land-
scape measures and the performance criteria of an EA.

Nguyen (2011) carried out a detailed survey of real-world DOPs and DCOPs, and from this iden-
tified some important gaps between real-world DOPs and academic research, including the current
coverage of metaheuristic academic research, the types of problems that have not been covered by the
community, the characteristics and problem information that we can use to solve DOPs more effectively,
and the way that DOPs are solved in real-world scenarios.

The above studies are interesting in terms of trying to understand what (types of) characteristics
make a DCOP easy or difficult to solve by metaheuristics. However, these studies are just a first step
into the road. Much more effort is needed along this challenging line of research for the domain of
metaheuristics for DCOPs.

5.3 Analysing the behaviour of an algorithm

Another challenging issue on metaheuristics for DCOPs is to analyse the behaviour of algorithms. The
research in the domain so far has mainly been empirical. Due to the difficulty, theoretical analysis of
metaheuristics for DCOPs has just appeared in recent years with only a few results. These studies mainly
focus on the tracking performance of simple metaheuristics, e.g. the (1+1) EA and (1+λ) EA,1 on simple
DCOPs, e.g. the DBMP.

As a first theoretical study, Stanhope & Daida (1999) analysed a (1+1) EA on the DBMP. They
presented the transition probabilities of the (1+1) EA and showed that even small perturbations in the
fitness function could have a significantly negative impact on the performance of the (1+1) EA. Droste
(2002) analysed the first hitting time (FHT)2 of a (1+1) evolution strategy (ES) on the DBMP, where
exactly one bit is changed with a given probability after each function evaluation. Jansen & Schellbach
(2005) presented a rigorous performance analysis of the (1+ λ) EA on a tracking problem in a two-
dimensional lattice and showed that the expected FHT strictly increases with the offspring population
size (i.e. λ) whereas the expected number of generations to reach the target decreases with λ. Weicker
(2005) used Markov models to analyse the tracking behaviour of (1, λ)-ESs with different mutation
operators for a DCOP with a single moving optimum. Recently, Rohlfshagen et al. (2009) analysed
how the magnitude and frequency of change may affect the tracking performance of a (1+1) EA on two
specially designed pseudo-Boolean functions under the framework of the XOR DOP generator by Yang
(2003).

1 In a (1+λ) EA, only one solution is maintained in the population. In each iteration, the unique solution acts as the parent to
generate λ offspring via mutation. If the fitness of the best offspring is not worse than the parent, the best offspring will replace
the parent; otherwise, the parent will survive into the next generation. The simplest (1+ λ) EA is (1+1) EA where λ= 1.

2 The FHT of an EA is the time that the EA finds the optimal solution for the first time, and the expected FHT of an EA
is the average time that the EA requires to find the optimal solution, which implies the average computational time complexity
of the EA.
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The theoretical studies in the domain, although not many so far, can serve as good starting points.
Researchers need to take the challenge to analyse the behaviour of more advanced metaheuristics for
more complex DCOPs regarding more performance measures.

6. Conclusion and future research directions

Many real-world optimization problems are DCOPs, where the problem involves changes over time.
Addressing DCOPs is an important task. Due to the intrinsic characteristics, metaheuristics are good
choice of tools to address DCOPs. Over the past two decades, DCOPs have been investigated by the
metaheuristics community, and in recent years, DCOPs have attracted a growing interest from the meta-
heuristics community. This paper provides a tutorial on the domain of metaheuristics for DCOPs. We
have covered the key aspects of the domain, including the definition and features of DCOPs, benchmark
and test DCOPs studied in the literature, performance measures used to compare different metaheuris-
tics for DCOPs, methodologies developed to improve the performance of metaheuristics for DCOPs,
case studies on real-world applications and challenges.

In general, there have been some promising results considering the use of metaheuristics for DCOPs
in the literature. However, the domain is still very young and there are many research directions to be
pursued in the future.

• Modelling real-world DCOPs: Most studies in the domain so far have used general-purpose bench-
mark DCOPs, e.g. the DBMP, the DKP and the XOR DOP generator, to test and evaluate metaheuris-
tics. These benchmark DCOPs are mainly academic problems, designed for the good of testing some
properties of algorithms. For this purpose, we still need more academic DCOPs that can be used to
test more different properties of algorithms, e.g. the dynamic modular functions by Rohlfshagen
& Yao (2010) to test the role of modularity on EAs for DCOPs. However, to make the domain
more meaningful and useful, we need to study real-world DCOPs. As shown in this paper, there
have been some application studies on metaheuristics for real-world DCOPs, see Cheng & Yang
(2010a,b), Chitty & Hernandez (2004), Xing et al. (2011) and Nguyen (2011). However, the num-
ber of real-world application studies so far is significantly below expectation. Researchers in the
domain need to consider and model more real-world DCOPs, which is a challenging task, and apply
metaheuristics to solve them in the future.

• Developing new methods for the domain: As mentioned before, for the moment, studies mainly
focus on population-based metaheuristics, e.g. EAs and ACO algorithms, for DCOPs. On the one
hand, we may need to develop more efficient population-based metaheuristics for DCOPs. On the
other hand, we may need to study non-population-based metaheuristics for DCOPs or integrate
them into population-based metaheuristics for DCOPs. Moreover, although several approaches have
been developed to enhance traditional metaheuristics for solving DCOPs, new efficient approaches
are still greatly needed to address different types of DCOPs. Different approaches have different
strengths and weaknesses for metaheuristics for different DCOPs. Hence, it is also worthy to develop
and investigate hybrid approaches to metaheuristics for DCOPs in the future.

• Theoretical research: As mentioned before, the theoretical studies in the domain are quite limited so
far, due to the difficulty behind. The relative lack of theoretical results makes it hard to fully justify
the strengths and weaknesses of metaheuristics and predict their behaviour for different DCOPs.
Hence, theoretical studies are greatly needed for the domain. As reviewed, the analysis on the char-
acteristics of DCOPs has recently started with a few results. But, this line of research needs to be
enhanced significantly in order to gain insights as to what DCOPs are hard or easy for what types

 by guest on July 29, 2013
http://im

am
an.oxfordjournals.org/

D
ow

nloaded from
 

http://imaman.oxfordjournals.org/


474 S. YANG ET AL.

of metaheuristics. The analysis of dynamic behaviour of metaheuristics for DCOPs also needs to be
pursued or enhanced. For many real-world DCOPs, it is more useful to know how well an algorithm
tracks the moving optima within certain acceptable error levels rather than whether and how fast
the algorithm could hit the moving optima. Hence, it is also important to analyse metaheuristics for
DCOPs regarding such properties as tracking error and robustness.
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